Influence of Carbon Sequestration in an Optimal Set of Coppice Rotations for Eucalyptus Plantations

  • L. Diaz-Balteiro
  • L. C. E. Rodríguez
Part of the Managing Forest Ecosystems book series (MAFE, volume 17)

The problem of determining the optimal harvest ages and the optimal number of harvests before a forest stand is re-established for coppicing tree species has been called “the coppice problem” (Medema & Lyon, 1985; Tait, 1986). The determination of optimal forest rotation ages when considering both timber production and carbon uptake is a problem that has been addressed in forest literature since the 1990s. Several authors have used some variants of the Faustmann formula to devise methods in order to incorporate the benefits of capturing CO2.


Carbon Sequestration Site Index Carbon Price Eucalyptus Plantation Optimal Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABRAF (2006). Anuário Estatístico da ABRAF. Associação Brasileira de Produtores de Florestas Plantadas, Brasília, 80p.Google Scholar
  2. Amidon, E.L., Akin, G.S. (1968). Dynamic programming to determine optimum levels of growing stock. For. Sci. 14, 287–291.Google Scholar
  3. Ask, P., Carlsson, M. (2000). Nature conservation and timber production in areas with fragmented ownership patterns. Forest Pol. Econom. 1, 209–223.CrossRefGoogle Scholar
  4. Bateman, I.J., Lovett, A.A. (2000). Modelling and valuing carbon sequestration in softwood and hardwood trees, timber products and forest soils. J. Environ. Manage. 60, 301–323.CrossRefGoogle Scholar
  5. Borges, J.G., Falcão, A. (1999). Programação dinâmica e gestão de povoamentos florestais com estrutura regular e composição pura. Aplicação à Mata Nacional de Leiria. Revista Florestal XII, 69–82.Google Scholar
  6. Borges, J.G., Hoganson, H.M. (1999). Assessing the impact of management unit design and adjacency constraints on forestwide spatial conditions and timber revenues Can. J. For. Res. 29, 1764–1774.CrossRefGoogle Scholar
  7. Brodie, J.D., Adams, D.M., Kao, C. (1978). Analysis of economic impacts on thinning and rotation of Douglas fir using dynamic programming For. Sci. 24, 513–522.Google Scholar
  8. Cacho, O.J., Hean, R.L. (2004). Dynamic optimization for evaluating externalities in agroforestry systems: an example from Australia. In: Alavalapati, J.R.R., Mercer, D.E. (Eds.) Valuing Agroforestry Systems. Kluwer, Dordrecht, The Netherlands 139–163.Google Scholar
  9. Cacho, O.J., Hean, R.L., Wise, R. (2003). Carbon-accounting methods and reforestation incentives. Aust. J. Agr. Resour. Ec. 47, 153–179.CrossRefGoogle Scholar
  10. Carlsson, M., Andersson, M., Dahlin, B., Sallnäs, O. (1998). Spatial patterns of habitat protection in areas with non-industrial private forestry—hypotheses and implications. Forest Ecol. Manag. 107, 203–211.CrossRefGoogle Scholar
  11. Chang, S.J. (1998). A generalized Faustmann model for the determination of optimal harvest age. Can. J. For. Res. 28, 652–659.CrossRefGoogle Scholar
  12. Cunha-e-Sá, M., Rosa, R. (2004). Effects of carbon taxes and subsidies on optimal forest rotation age: an application to the Portuguese eucalyptus forest. 1st Conference of AERNA (Spanish & Portuguese Association of Environmental and Natural Resource Economics), Vigo, Spain.Google Scholar
  13. Diaz-Balteiro, L, Rodriguez, L.C.E. (2006). Optimal rotations on Eucalyptus plantations including carbon sequestration−A comparison of results in Brazil and Spain. Forest Ecol. Manag. 229 (1–3), 247–258.CrossRefGoogle Scholar
  14. Diaz-Balteiro, L, Romero, C. (2003). Carbon captured as a new instrument in forest management: some implications. Scientia Forestalis 63, 103–114.Google Scholar
  15. Faustmann, M. (1849). Berechung des Wertes welchen Waldboden sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen. Allgemeine Forst und Jagd Zeitung 15. Reissued in: Faustmann, M. (1995). Calculation of the value which forest land and immature stands possess for forestry. J. For. Econ. 1, 7–44.Google Scholar
  16. Filius, A.M., Dul, M.T. (1992). Dependence of rotation and thinning regime on economic factors and silvicultural constraints: results of an application of dynamic programming. Forest Ecol. Manag. 48, 345–356.CrossRefGoogle Scholar
  17. González-Río, F., Castellanos, A., Fernández, O., Astorga, R., Gómez, C. (1997). Manual técnico de selvicultura del eucalipto. Proxecto Columella. Escuela Politécnica Superior de Lugo, Spain.Google Scholar
  18. Gracia, C., Vayreda, J., Sabaté, S., Ibáñez, J. (2004). Main components of the aboveground biomass expansion factors. Cost Action EG-21 WG-1. Meeting on BEF’s, Hämeelinna, Finland.Google Scholar
  19. Haight, R.G., Brodie, J.D., Dahms, W. (1985). A dynamic programming algorithm for optimization of lodgepole pine management. For. Sci. 31, 321–330.Google Scholar
  20. Hillier, F.S., Libiermann, G.J. (1991). Introducción a la Investigación de Operaciones. McGraw-Hill, México.Google Scholar
  21. Hoen, H.F., Solberg B. (1994). Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For. Sci. 40, 429–451.Google Scholar
  22. Hoganson, H.M., Borges, J.G. (1998). Using dynamic programming and overlapping subproblems to address adjacency in large harvest scheduling problems. For. Sci. 44, 526–538.Google Scholar
  23. Klemperer, D. (2001). Incorporating risk into financial analysis of forest management investments. In: von Gadow (Ed.) Risk Analysis in Forest Management. Kluwer, Dordrecht, The Netherlands.Google Scholar
  24. Knoke, T., Moog, M., Plusczyk, N. (2002). On the effect of volatile stumpage prices on the economic attractiveness of a silvicultural transformation strategy. Forest Pol. Econom. 2, 229–240.CrossRefGoogle Scholar
  25. Langholtz, M., Carter, D.R., Rockwood, D.L., Alavalapati, J.R.R., Green, A. (2005). Effect of dendroremediation incentives on the profitability of short-rotation woody cropping of Eucalyptus grandis. Forest Pol. Econom. 7, 806–817.CrossRefGoogle Scholar
  26. Madrigal, A., Alvárez, J. G., Rodríguez, R., Rojo, A. (1999). Tablas de producción para los montes españoles. Fundación Conde del Valle Salazar, Madrid.Google Scholar
  27. McKenney, D.W., Yemshanova, D., Fox, G., Ramlal, E. (2004). Cost estimates for carbon sequestration from fast growing poplar plantations in Canada. Forest Pol. Econom. 6, 345–358.CrossRefGoogle Scholar
  28. Medema, E.L., Lyon, G.W. (1985). The determination of financial rotation ages for coppicing tree species. For. Sci. 31, 398–404.Google Scholar
  29. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. Intergovernmental Panel on Climate Change, Japan.Google Scholar
  30. Ribeiro, C.A.A.S., Graça, L.R. (1996). Manejo por talhadia: estabelecimento das idades ótimas de corte. Revista Árvore 20, 29–36.Google Scholar
  31. Richards, K.R., Strokes, C. (2004). A review of forest carbon sequestration cost studies: a dozen years of research. Climatic Change 63, 1–48.CrossRefGoogle Scholar
  32. Riesco, G. (2004). Forest management in Eucalyptus stands: the Spanish case. International IUFRO 4.04.06 Meeting: The Economics and Management of High Productivity Plantations, Lugo, Spain.Google Scholar
  33. Robertson, K., Loza-Balbuena, I., Ford-Robertson, J. (2004). Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects. Environ. Sci. Pol. 7, 465–475.CrossRefGoogle Scholar
  34. Rodriguez, L.C.E. (1999). Defining the optimum sequence of rotations for coppice regimes of eucalyptus. In: Chang, S.J. (Ed.) Proceedings of the International Symposium 150 Years to the Faustmann Formula: Its Consequences for Forestry and Economics in the Past, Present and Future, Darmstadt.Google Scholar
  35. Romero, C., Ríos, V., Diaz Balteiro, L. (1998). Optimal forest rotation age when carbon captured is considered: theory and applications. J. Oper. Res. Soc. 49, 121–131.CrossRefGoogle Scholar
  36. Samuelson, P.A. (1976). Economics of Forestry in an evolving society. Econ. Inq. 14, 466–492.CrossRefGoogle Scholar
  37. Scanavaca Junior, L., Garcia, J.N. (2004). Determinação das propiedades físicas e mecânicas da madeira de Eucalyptus urophylla. Scientia Forestalis 65, 120–129.Google Scholar
  38. Schnute, J. (1981). A versatile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci. 38, 1128–1140.CrossRefGoogle Scholar
  39. Schreuder, G.F. (1971). The simultaneous determination of optimal thinning schedule and rotation for an even-aged forest. For. Sci. 17, 333–339.Google Scholar
  40. Smart, J.C.R., Burgess, J.C. (2000). An environmental economic analysis of willow SRC production. J. For. Econ. 6, 193–225.Google Scholar
  41. Sobol, I.M. (1994). A primer in Monte Carlo Method. CRC, Boca Raton, FL.Google Scholar
  42. Stainback, G.A., Alavalapati, J.R.R. (2005). Effects of carbon markets on the optimal management of Slash Pine (Pinus elliottii) plantations. Southern J. Appl. For. 29, 27–32.Google Scholar
  43. Tait, D.E. (1986). A dynamic programming solution of financial rotation ages for coppicing tree species. Can. J. For. Res. 16, 799–801.CrossRefGoogle Scholar
  44. Torres-Rojo, J.M., Brodie, J.D. (1990). Demonstration of benefits from an optimization approach to the economic analysis of natural pine stands in Central Mexico. Forest Ecol. Manag. 36, 267–278.CrossRefGoogle Scholar
  45. van Kooten, G.C., Binkley, C.S., Delcourt, G. (1995). Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. Am. J. Agr. Econ. 77, 365–374.CrossRefGoogle Scholar
  46. van Kooten, G.C., Krcmar-Nozic, E., Stennes, B., van Gorkom, R. (1999). Economics of fossil fuel substitution and wood product sinks when trees are planted to sequester carbon on agricultural lands in western Canada. Can. J. For. Res. 29, 1669–1678.CrossRefGoogle Scholar
  47. van Kooten, G.C., Eagle, A.J., Manley, J., Smolak, T. (2004). How costly are carbon offsets? A meta-analysis of carbon forest sinks. Environ. Sci. Pol. 7, 239–251.CrossRefGoogle Scholar
  48. Whittock, S.P., Greaves, B.L., Apiolaza, L.A. (2004a). A cash flow model to compare coppice and genetically improved seedling options for Eucalyptus globulus plantations. Forest Ecol. Manag. 191, 267–274.CrossRefGoogle Scholar
  49. Whittock, S.P., Apiolaza, L.A., Dutkowski, G.W., Greaves, B.L., Potts, B.M. (2004b). Carbon revenues and economic breeding objectives in Eucalyptus globulus pulpwood plantations. In: Borralho, N.M.G., Periera, J.S., Marques, C., Coutinho, J., Madeira, M., Tomé, M. (Eds.) Eucalyptus in a Changing World. IUFRO Symposium, Aveiro.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • L. Diaz-Balteiro
    • 1
  • L. C. E. Rodríguez
    • 2
  1. 1.Department of Forest Economics and ManagementETS Ingenieros de MontesMadridSpain
  2. 2.Escola Superior de Agricultura “Luiz de Queiroz”University of São PauloPiracicabaBrazil

Personalised recommendations