Advertisement

A Mechanistic View of the Capacity of Forests to Cope with Climate Change

  • F. Valladares
Part of the Managing Forest Ecosystems book series (MAFE, volume 17)

From an evolutionary point of view, trees have at least one intriguing feature: they tend to have high levels of genetic diversity, but at the same time, they are known for their low evolutionary rates. Thus, trees are characterized by a counterintuitive combination of rapid micro-evolutionary change and a low macro-evolutionary change (Petit & Hampe, 2006). Trees experience highly heterogeneous environmental conditions and are exposed to extreme climatic events within their lifetime, which could contribute to the maintenance of their typically high genetic diversity (Gutschick & BassiriRad, 2003; Petit & Hampe, 2006). Trees are not only highly diverse but also highly fecund over their extended lifetime, allowing them to respond to high selection intensity and to adapt quickly to local conditions (Petit & Hampe, 2006). Mean antiquity of tree species is one order of magnitude higher than for herbs, which implies low rates of extinction to compensate for their low rates of speciation. However, forest species are more vulnerable to environmental change than this combination of evolutionary features may suggest (Jump & Peñuelas, 2005). Recent studies of Spanish populations of beech (Fagus sylvatica) are showing that the fragmentation of the forests that took place several centuries ago has led to a high genetic divergence of the populations and a reduced genetic diversity despite the fact that the species is windpollinated and the fragments are very near to each other (Jump & Peñuelas, 2006). These studies show the negative genetic impact of forest fragmentation, demonstrating that trees are not at reduced risk from environmental change (Fig. 1). This rather unexpected sensitivity of trees to forest management is particularly important under the current climate change since it can exacerbate the impact of human activities on forest dynamics and natural regeneration (Castro et al., 2004a).

Keywords

Climate Change Phenotypic Plasticity Fourth Assessment Report Shade Tolerance Understory Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcamo, J., Moreno, J. M., Nováky, B., Bindi, M., Corobov, R., Devoy, R. J. N., et al. (2007). Europe: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. v. d. Linden & C. E. Hanson (Eds.), Climate change 2007 (pp. 541–580). Cambridge: Cambridge University Press.Google Scholar
  2. Alonso, A., Valladares, F. (2007). International efforts on global change research. In E. Chuvieco (Ed.), Earth observation of global change (pp. 1–22). Dordrecht, The Netherlands: Springer.Google Scholar
  3. Araujo, M. B., Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33, 1677–1688.CrossRefGoogle Scholar
  4. Atkin, O. K., Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343–361.CrossRefGoogle Scholar
  5. Atkin, O. K., Loveys, B. R., Atkinson, L. J., Pons, T. L. (2006). Phenotypic plasticity and growth temperature: understanding interspecific variability. Journal of Experimental Botany, 57(2), 267–281.CrossRefGoogle Scholar
  6. Balaguer, L., Martínez-Ferri, E., Valladares, F., Pérez-Corona, M. E., Baquedano, F. J., Castillo, F. J., et al. (2001). Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Functional Ecology, 15, 124–135.CrossRefGoogle Scholar
  7. Ball, M. C., Hodges, V. S., Laughlin, G. P. (1991). Cold-induced photoinhibition limits regeneration of snow gum at tree-line. Functional Ecology, 5, 663–668.CrossRefGoogle Scholar
  8. Barker, T., Bashmakov, I., Bernstein, L., Bogner, J. E., Bosch, P. R., Dave, R., et al. (2007). Mitigation of climate change. Technical summary. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In B. Metz, O. R., Davidson, P. R., Bosch, R., Dave & L. A., Meyer (Eds.), Climate change 2007 (pp. 1–103). Cambridge/New York: Cambridge University Press.Google Scholar
  9. Bascompte, J., Jordano, P., Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431–433.CrossRefGoogle Scholar
  10. Beerling, D. J., Heath, J., Woodward, F. I., Mansfield, T. A. (1996). Drought-Co2 interactions in trees - observations and mechanisms. New Phytologist, 134(2), 235–242.CrossRefGoogle Scholar
  11. Benito-Garzon, M., Sanchez-de-Dios, R., Sainz-Ollero, H. (2007). Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography, 30, 120–134.Google Scholar
  12. Bertness, M. D., Callaway, R. M. (1994). Positive interactions in communities. Trends in Ecology and Evolution, 9, 191–193.CrossRefGoogle Scholar
  13. Billington, H. L., Pelham, J. (1991). Genetic variation in the date of budburst in Scottish birch populations - implications for climate change. Functional Ecology, 5, 403–409.CrossRefGoogle Scholar
  14. Brooker, R. W. (2006). Plant-plant interactions and environmental change. New Phytologist, 171(2), 271–284.CrossRefGoogle Scholar
  15. Buchmann, N. (2002). Plant ecophysiology and forest response to global change. Tree Physiology, 22, 1177–1184.Google Scholar
  16. Camarero, J. J., Gutiérrez, E. (2004). Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Climatic Change, 63, 181–200.CrossRefGoogle Scholar
  17. Cannell, M. G. R., Thornley, J. H. (2000). Modelling the components of plant respiration: some guiding principles. Annals of Botany, 85, 45–54.CrossRefGoogle Scholar
  18. Cannell, M. G. R., Grace, J., Booth, A. (1989). Possible impacts of climatic warming on trees and forests in the united kingdom: a review. Forestry, 62, 337–364.CrossRefGoogle Scholar
  19. Carrión, J. S., Yll, E. I., Walker, M. J., Legaz, A., Chaín, C., López, A. (2003). Glacial refugia of temperate, Mediterranean and Ibero-North African flora in southeastern Spain: new evidence from cave pollen at two Neanderthal man sites. Global Ecology and Biogeography, 12, 119–129.CrossRefGoogle Scholar
  20. Castro, J., Zamora, R., Hodar, J. A., Gomez, J. M. (2004a). Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. Journal of Ecology, 92(2), 266–277.CrossRefGoogle Scholar
  21. Castro, M., Martín-Vide, S., Alonso, S. (2004b). El clima de España: pasado, presente y escenarios de clima para el siglo XXI. In J. M. Moreno (Ed.), Evaluación de los impactos del cambio climático en España (pp. 3–64). Madrid: Ministerio de Medio Ambiente.Google Scholar
  22. Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., et al. (2007). Regional climate projections. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: The physical science basis (pp. 847–943). Cambridge/New York: Cambridge University Press.Google Scholar
  23. Diamond, J. (2005). Collapse: How societies choose to fail or succeed. New York: Viking.Google Scholar
  24. Dullinger, S., Dirnbock, T., Grabherr, G. (2004). Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. Journal of Ecology, 92(2), 241–252.CrossRefGoogle Scholar
  25. Etterson, J. R. (2004). Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. Genetic architecture of three populations reciprocally planted along an environmental gradient in the great plains. Evolution, 58(7), 1459–1471.Google Scholar
  26. Flores, J. L. F., Jurado, E. (2003). Are nurse-protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14, 911–916.CrossRefGoogle Scholar
  27. Franks, S. J., Sim, S., Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences USA, 104, 1278–1282.CrossRefGoogle Scholar
  28. Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., Stott, P. A. (2006). Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835–838.CrossRefGoogle Scholar
  29. Gómez-Aparicio, L.,F.Valladares.,Zamora, R. (2006). Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiology, 26, 947–958.Google Scholar
  30. Grace, J. (2004). Understanding and managing the global carbon cycle. Journal of Ecology, 92(2), 189–202.CrossRefGoogle Scholar
  31. Grace, J., Zhang, R. (2006). Predicting the effect of climate change on global plant productivity and the carbon cycle. In J. I. L. Morison & M. D. Morecroft (Eds.), Plant growth and climate change (pp. 187–207). Kundli, India: Blackwell.CrossRefGoogle Scholar
  32. Gravel, D., Canham, C. D., Beaudet, M., Messier, C. (2006). Reconciling niche and neutrality: the continuum hypothesis. Ecology Letters, 9, 399–409.CrossRefGoogle Scholar
  33. Greenland, D., Goodin, D. G., Smith, R. C. (Eds.) (2003). Climate variability and ecosystem response in long-term ecological research sites. New York: Oxford University Press.Google Scholar
  34. Gutschick, V. P., BassiriRad, H. (2003). Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist, 160(1), 21–42.CrossRefGoogle Scholar
  35. Hampe, A. (2004). Bioclimate envelope models: what they detect and what they hide. Global Ecology and Biogeography Letters, 13, 469–476.CrossRefGoogle Scholar
  36. Hampe, A. (2005). Fecundity limits in Frangula alnus (Rhamnaceae) relict populations at the species’ southern range margin. Oecologia, 143, 377–386.CrossRefGoogle Scholar
  37. Hampe, A., Petit, R. J. (2005). Conserving biodiversity under climate change: the rear edge matters. Ecology Letters, 8, 461–467.CrossRefGoogle Scholar
  38. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., et al. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296, 2158–2162.CrossRefGoogle Scholar
  39. Howe, G. T., Aitken, S. N., Neale, D. B., Jermstad, K. D., Wheeler, N. C., Chen, T. H. (2003). From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Forest Research, 81, 1247–1266.Google Scholar
  40. Inouye, D. W. (2000). The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters, 3, 457–463.CrossRefGoogle Scholar
  41. Jackson, S. T. (2006). Forest genetics in space and time. New Phytologist, 171(1), 1–3.CrossRefGoogle Scholar
  42. Joffre, R., Rambal, S., Winkel, T. (2001). Respuestas de las plantas mediterráneas a la limitación de agua: desde la hoja hasta el dosel. In R. Zamora & F. I. Pugnaire (Eds.), Aspectos funcionales de los ecosistemas mediterráneos (pp. 37–85). Granada: CSIC-AEET.Google Scholar
  43. Jump, A. S., Peñuelas, J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010–1020.CrossRefGoogle Scholar
  44. Jump, A. S., Peñuelas, J. (2006). Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proceedings of the National Academy of Sciences USA, 103, 8096–8100.CrossRefGoogle Scholar
  45. Jump, A. S., Hunt, J. M., Peñuelas, J. (2006). Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12, 1–12.CrossRefGoogle Scholar
  46. Körner, C. (2003a). Carbon limitation in trees. Journal of Ecology, 91, 4–17.CrossRefGoogle Scholar
  47. Körner, C. (2003b). Limitation and stress - always or never? Journal of Vegetation Science, 14, 141–143.Google Scholar
  48. Körner, C. (2006). Significance of temperature in plant life. In J. I. L. Morison & M. D. Morecroft (Eds.), Plant growth and climate change (pp. 48–69). Kundli, India: Blackwell.CrossRefGoogle Scholar
  49. Körner, C., Paulsen, J. (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713–732.Google Scholar
  50. Kullman, L. (2002). Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology, 90, 68–77.CrossRefGoogle Scholar
  51. Lambers, H., Chapin III, F. S., Pons, T. L. (1998). Plant physiological ecology. York, PA: Springer.Google Scholar
  52. Larcher, W. (1995). Physiological plant ecology: Ecophysiology and stress physiology of functional groups. Berlin/Heidelberg: Springer.Google Scholar
  53. Lloret F., Peñuelas, J., Estiarte, M. (2004). Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Global Change Biology, 10(2), 248–258.CrossRefGoogle Scholar
  54. Lloyd, A. H., Fastie, C. L. (2003). Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience, 10, 176–185.Google Scholar
  55. Maestre, F. T., Cortina, J. (2004). Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proceedings of the Royal Society of London Series B-Biological Sciences, 271, S331–S333.CrossRefGoogle Scholar
  56. Maestre, F. T., Valladares, F., Reynolds, J. F. (2005). Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology, 93, 748–757.CrossRefGoogle Scholar
  57. Maestre, F. T., Valladares, F., Reynolds, J. F. (2006). The stress-gradient hypothesis does not fit all relationships between plant–plant interactions and abiotic stress: further insights from arid environments. Journal of Ecology, 94, 17–22.CrossRefGoogle Scholar
  58. Martínez-Alonso, C., Valladares, F., Camarero, J. J., López Arias, M., Serrano, M., Rodríguez, J. A. (2007). The uncoupling of secondary growth, cone and litter production by intradecadal climatic variability in a Mediterranean Scots Pine Forest. Forest Ecology and Management,vol 253:19–29.CrossRefGoogle Scholar
  59. Matesanz, S., Brooker, R. W., Valladares, F., Klotz, S. (2008). Effects of long-term climate change on marginal steppic vegetation: from the community to the species. Journal of Vegetation Science Google Scholar
  60. Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global climate projections. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: The physical science basis (pp. 747–847). Cambridge/New York: Cambridge University Press.Google Scholar
  61. Mejías, J. A., Arroyo, J., Ojeda, F. (2002). Reproductive ecology of Rhododendron ponticum (Ericaceae) in relict Mediterranean populations. Botanical Journal of the Linnean Society, 140, 297–311.CrossRefGoogle Scholar
  62. Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.CrossRefGoogle Scholar
  63. Miriti, M. N. (2006). Ontogenetic shift from facilitation to competition in a desert shrub. Journal of Ecology, 94, 973–979.CrossRefGoogle Scholar
  64. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19.CrossRefGoogle Scholar
  65. Mooney, H. A., Winner, W. E., Pell, E. J. (Eds.) (1991). Response of plants to multiple stresses. San Diego, CA: Academic.Google Scholar
  66. Morales, P., Sykes, M. T., Prentice, I. C., Smith, P., Smith, B., Bugmann, H., et al. (2005). Comparing and evaluating process-based cosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11, 2211–2233.CrossRefGoogle Scholar
  67. Nabuurs, G. J., O., Masera, K., Andrasko, Benitez-Ponce, P., R., Boer, M., Dutschke,et al. (2007). Forests. Impacts, adaptation and vulnerability. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. v. d. Linden & C. E. Hanson (Eds.), Climate change 2007 (pp. 1–73). Cambridge: Cambridge University Press.Google Scholar
  68. Niinemets, Ü. (2006). The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. Journal of Ecology, 94, 464–470.CrossRefGoogle Scholar
  69. Niinemets, U., Valladares, F. (2006). Tolerance to shade, drought and waterlogging of temperate, Northern hemisphere trees and shrubs. Ecological Monographs, 76, 521–547.CrossRefGoogle Scholar
  70. Ogaya, R., Peñuelas, J. (2003). Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 50, 137–148.CrossRefGoogle Scholar
  71. Parmesan, C. (1996). Climate and species range. Nature, 382, 765–766.CrossRefGoogle Scholar
  72. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.CrossRefGoogle Scholar
  73. Peñuelas, J., Boada, M. (2003). A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology, 9, 131–140.CrossRefGoogle Scholar
  74. Peñuelas, J., Filella, I. (2001). Phenology: responses to a warming world. Science, 294, 793–795.CrossRefGoogle Scholar
  75. Petit, R. J., Hampe, A. (2006). Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution and Systematics, 37, 187–214.CrossRefGoogle Scholar
  76. Petit, R. J., Hampe, A., Cheddadi, R. (2005). Climate changes and tree phylogeography in the Mediterranean. Taxon, 54(4), 877–885.CrossRefGoogle Scholar
  77. Piersma, T., Drent, J. (2003). Phenotypic flexibility and the evolution of organismal design. Trends in Ecology and Evolution, 18, 228–233.CrossRefGoogle Scholar
  78. Pinker, R. T., Zhang, B., Dutton, E. G. (2005). Do satellites detect trends in surface solar radiation? Science, 308, 850–853.CrossRefGoogle Scholar
  79. Pulido, F., Valladares, F., Calleja, J. A., Moreno, G., González-Bornay, G. (2008). Tertiary relict trees under Mediterranean climate: abiotic constraints on persistence of Prunus lusitanica at the eroding edge of its range. Journal of Biogeography doi: 10.1111/j.1365–2699.2008. 01898.x.Google Scholar
  80. Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., Rocheteau, A. (2004). The growth respiration component in eddy CO2 flux from a Quercus ilex Mediterranean forest. Global Change Biology, 10(9), 1460–1469.CrossRefGoogle Scholar
  81. Rehfeldt, G., Wykoff, W. R., Ying, C. C. (2001). Physiological plasticity, evolution, and impacts of a changing climate on Pinus contorta. Climatic Change, 50, 355–376.CrossRefGoogle Scholar
  82. Reichstein, M., Tenhunen, J. D., Roupsard, O., Ourcival, J. M., Rambal, S., Miglietta, F., et al. (2002). Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biology, 8(10), 999–1017.CrossRefGoogle Scholar
  83. Richardson, A. D., Bailey, A. S., Denny, E. G., Martin, C. W., O’Keefe, J. (2006). Phenology of a northern hardwood forest canopy. Global Change Biology, 12(7), 1174–1188.CrossRefGoogle Scholar
  84. Roderick, M. L., Farquhar, G. D. (2005). Changes in New Zealand pan evaporation since the 1970s. International Journal of Climatology, 25, 2031–2039.CrossRefGoogle Scholar
  85. Roderick, M. L., Farquhar, G. D., Berry, S. L., Noble, I. R. (2001). On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129, 21–30.CrossRefGoogle Scholar
  86. Sánchez-Gómez, D., Valladares, F., Zavala, M. A. (2006a). Performance of seedlings of Mediterranean woody species under experimental gradients of irradiance and water availability: trade-offs and evidence for niche differentiation. New Phytologist, 170, 795–806.CrossRefGoogle Scholar
  87. Sánchez-Gómez, D., Zavala, M. A., Valladares, F. (2006b). Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate–Mediterranean ecotone. Acta Oecologica, 30, 322–332.CrossRefGoogle Scholar
  88. Sanz-Perez, V., Castro-Diez, P., Valladares, F. (2008). Differential and interactive effects of temperature and photoperiod on budburst of two co-occurring Mediterranean oaks. Tree Physiology (in press)Google Scholar
  89. Savolainen, O., Bokma, F., Garcia-Gil, R., Komulainen, P., Repo, T. (2004). Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. Forest Ecology and Management, 197, 79–89.CrossRefGoogle Scholar
  90. Saxe, H., Cannell, M. G. R., Johnsen, O., Ryan, M. G., Vourlitis, G. (2001). Tree and forest functioning in response to global warming. New Phytologist, 149, 369–400.CrossRefGoogle Scholar
  91. Stanhill, G., Cohen, S. (2001). Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meterorology, 107, 255–278.CrossRefGoogle Scholar
  92. Sturm, M., Racine, C., Tape, K. (2001). Climate change: increasing shrub abundance in the arctic. Nature, 411, 546–547.CrossRefGoogle Scholar
  93. Suc, J. P. (1984). Origin and evolution of the mediterranean vegetation and climate in Europe. Nature, 307, 429–432.CrossRefGoogle Scholar
  94. Taschler, D., Neuner, G. (2004). Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant, Cell and Environment, 737–746.Google Scholar
  95. Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T., Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. PNAS, 102, 8245–8250.CrossRefGoogle Scholar
  96. Tielborger, K., Kadmon, R. (2000). Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology, 81(6), 1544–1553.Google Scholar
  97. Valiente-Banuet, A., Vital-Rumebe, A., Verdu, M., Callaway, R. M. (2006). Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences USA, 103, 16812–16817.CrossRefGoogle Scholar
  98. Valladares, F. (2003). Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity. In K. Esser, U. Lüttge, W. Beyschlag & F. Hellwig (Eds.), Progress in Botany (Vol. 64, pp. 439–471). Heidelberg: Springer.Google Scholar
  99. Valladares, F. (2004a). Global change and radiation in Mediterranean forest ecosystems: a meeting point for ecology and management. In M. Arianoutsou & V. Papanastasis (Eds.), Ecology, conservation and sustainable management of mediterranean type ecosystems of the World (pp. 1–4). Rotterdam: Millpress.Google Scholar
  100. Valladares, F. (Ed.) (2004b). Ecología del bosque mediterraneo en un mundo cambiante. Madrid: Organismo Autónomo de Parques Nacionales, Ministerio de Medio Ambiente.Google Scholar
  101. Valladares, F., Gianoli, E. (2007). How much ecology do we need to know to restore Mediterranean ecosystems? Restoration Ecology, 15, 363–368.CrossRefGoogle Scholar
  102. Valladares, F., Niinemets, Ü. (2008). Shade tolerance, a key plant trait of complex nature and consequences. Annual Review of Ecology, Evolution and Systematics, 39, 343–366.CrossRefGoogle Scholar
  103. Valladares, F., Pearcy, R. W. (1997). Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant, Cell and Environment, 20, 25–36.CrossRefGoogle Scholar
  104. Valladares, F., Pearcy, R. W. (2002). Drought can be more critical in the shade than in the sun: a field study of carbon gain and photoinhibition in a Californian shrub during a dry El Niño year. Plant Cell and Environment, 25, 749–759.CrossRefGoogle Scholar
  105. Valladares, F., Sánchez-Gómez, D. (2006). Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven species. Plant Biology, 8, 688–697.CrossRefGoogle Scholar
  106. Valladares, F., Balaguer, L., Martinez-Ferri, E., Perez-Corona, E., Manrique, E. (2002). Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytologist, 156, 457–467.CrossRefGoogle Scholar
  107. Valladares, F., Arrieta, S., Aranda, I., Lorenzo, D., Tena, D., Sánchez-Gómez, D., et al. (2005a). Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental-Mediterranean sites. Tree Physiology, 25, 1041–1052.Google Scholar
  108. Valladares, F., Dobarro, I., Sánchez-Gómez, D., Pearcy, R. W. (2005b). Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. Journal of Experimental Botany, 56, 483–494.CrossRefGoogle Scholar
  109. Valladares, F., Sanchez, D., Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, 1103–1116.CrossRefGoogle Scholar
  110. Valladares, F., Gianoli, E., Gómez, J. M. (2007a). Ecological limits to plant phenotypic plasticity. Tansley review. New Phytologist, 146, 749–763.CrossRefGoogle Scholar
  111. Valladares, F., Zaragoza-Castells, J., Sánchez-Gómez, D., Matesanz, S., Alonso, B., Portsmuth, A., et al. (2008). Is shade detrimental for Mediterranean shrubs experiencing periods of extreme drought and late-winter frosts? New Phytologist Journal: Annals of Botony Google Scholar
  112. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 426, 389–395.CrossRefGoogle Scholar
  113. Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., et al. (2005). From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science, 308, 847–850.CrossRefGoogle Scholar
  114. Wilson, R., Gutierrez, D., Gutierrez, J., Martínez, D., Agudo, R., Monserrat, V. J. (2005). Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters, 8, 1138–1146.CrossRefGoogle Scholar
  115. Woodward, F. I. (1987). Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327, 617–618.CrossRefGoogle Scholar
  116. Zaragoza-Castells, J., Sánchez-Gómez, D., Hartley, I. P., Matesanz, S., Valladares, F., Lloyd, J., et al. (2007a). Climate-dependent variations in leaf respiration in a dry-land, low productivity Mediterranean forest: the importance of thermal acclimation in both high-light and shaded habitats. Functional Ecology, 22(1), 172–184.Google Scholar
  117. Zaragoza-Castells, J., Sánchez-Gómez, D., Valladares, F., Hurry, V., Atkin, O. K. (2007b). Does growth irradiance affect temperature-dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Plant, Cell and Environment, 30, 820–833.CrossRefGoogle Scholar
  118. Zavaleta, E. S., Thomas, B. D., Chiariello, N. R., Asner, G. P., Shaw, M. R., Field, C. B. (2003). Plants reverse warming effect on ecosystem water balance. Proceedings of the National Academy of Sciences USA, 100, 9892–9893.CrossRefGoogle Scholar
  119. Ziska, L. H., Bunce, J. A. (2006). Plant responses to rising atmospheric carbon dioxide. In J. I. L. Morison & M. D. Morecroft (Eds.), Plant growth and climate change (pp. 17–47). Kundli, India: Blackwell.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • F. Valladares
    • 1
  1. 1.Instituto de Recursos NaturalesCSIC, IRN-CCMA-CSICMadridSpain

Personalised recommendations