Convergance of Cytoskeletal Signaling at p21-Activated Kinases

  • Anupama E. Gururaj
  • Rakesh Kumar
Part of the TTME book series (TTME, volume 2)

The PAK family of kinases regulates many aspects of cellular responses to external stimuli including cell migration. This process depends on organization of the actin cytoskeleton into adhesive and protrusive organelles in response to extracellular signals. PAKs are important nodes for the spatiotemporal control of actin-based motility in higher eukaryotes. PAKs are also central elements of signaling pathways that provide influence over virtually every major cellular function, including cell survival, cell differentiation and cell proliferation. This review depicts the roles of PAKs in cell migration and discusses how PAKs integrate with other sub-cellular systems involved in cell motility. Importantly, we also present an overview of the diverse functions of PAKs in the normal and pathological contexts. Our review concludes with a discussion of the lacunae and the future directions in the field of PAK biology.


P21 activated kinase Adhesion Cytoskeleton Gene regulation Integrins Hergulin PI3 kinase Epithelial-to-Mesenchimal Transition (EMT) Myosin light chain Dynein light chain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Penninger, J.M. & Crabtree, G.R. The actin cytoskeleton and lymphocyte activation. Cell 96, 9–12 (1999).CrossRefPubMedGoogle Scholar
  2. 2.
    Woodley, D.T. et al. Re-epithelialization. Human keratinocyte locomotion. Dermatol. Clin. 11, 641–646 (1993).PubMedGoogle Scholar
  3. 3.
    Witte, M.B. & Barbul, A. General principles of wound healing. Surg. Clin. North Am. 77, 509–528 (1997).CrossRefPubMedGoogle Scholar
  4. 4.
    Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).CrossRefPubMedGoogle Scholar
  5. 5.
    Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).CrossRefPubMedGoogle Scholar
  6. 6.
    Jaffe, A.B. & Hall, A. RHO GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. (2005).Google Scholar
  7. 7.
    Higgs, H.N. & Pollard, T.D. Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J Biol. Chem. 274, 32531–32534 (1999).CrossRefPubMedGoogle Scholar
  8. 8.
    Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).CrossRefPubMedGoogle Scholar
  9. 9.
    Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    Maaser, K. et al. Functional hierarchy of simultaneously expressed adhesion receptors: integrin alpha2beta1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol. Biol. Cell 10, 3067–3079 (1999).PubMedGoogle Scholar
  11. 11.
    Rabinovitz, I. & Mercurio, A.M. The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol. 139, 1873–1884 (1997).CrossRefPubMedGoogle Scholar
  12. 12.
    Sabeh, F. et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol. 167, 769–781 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 131, 791–805 (1995).CrossRefPubMedGoogle Scholar
  14. 14.
    Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).CrossRefPubMedGoogle Scholar
  15. 15.
    Dumin, J.A. et al. Pro-collagenase-1 (matrix metalloproteinase-1) binds the alpha(2)beta(1) integrin upon release from keratinocytes migrating on type I collagen. J Biol. Chem. 276, 29368–29374 (2001).CrossRefPubMedGoogle Scholar
  16. 16.
    Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 160, 267–277 (2003).CrossRefPubMedGoogle Scholar
  17. 17.
    Ohuchi, E. et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol. Chem. 272, 2446–2451 (1997).CrossRefPubMedGoogle Scholar
  18. 18.
    Wolf, K. & Friedl, P. Functional imaging of pericellular proteolysis in cancer cell invasion. Biochimie 87, 315–320 (2005).CrossRefPubMedGoogle Scholar
  19. 19.
    Sahai, E. & Marshall, C.J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5, 711–719 (2003).CrossRefPubMedGoogle Scholar
  20. 20.
    Manser, E., Leung, T., Salihuddin, H., Zhao, Z.S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).CrossRefPubMedGoogle Scholar
  21. 21.
    Bokoch, G.M. Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743–781 (2003).CrossRefPubMedGoogle Scholar
  22. 22.
    Jaffer, Z.M. & Chernoff, J. p21-activated kinases: three more join the PAK. Int. J Biochem. Cell Biol. 34, 713–717 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    Burbelo, P.D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 (1995).CrossRefPubMedGoogle Scholar
  24. 24.
    Morreale, A. et al. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat. Struct. Biol. 7, 384–388 (2000).CrossRefPubMedGoogle Scholar
  25. 25.
    Lei, M. et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387–397 (2000).CrossRefPubMedGoogle Scholar
  26. 26.
    Tsakiridis, T., Taha, C., Grinstein, S. & Klip, A. Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J. Biol. Chem. 271, 19664–19667 (1996).CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang, K. et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat. Immunol. 1, 419–425 (2000).CrossRefPubMedGoogle Scholar
  28. 28.
    Tang, Y., Zhou, H., Chen, A., Pittman, R.N. & Field, J. The Akt proto-oncogene links Ras to PAK and cell survival signals. J. Biol. Chem. 275, 9106–9109 (2000).CrossRefPubMedGoogle Scholar
  29. 29.
    Puto, L.A., Pestonjamasp, K., King, C.C. & Bokoch, G.M. p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J. Biol. Chem. 278, 9388–9393 (2003).CrossRefPubMedGoogle Scholar
  30. 30.
    Voisin, L., Larose, L. & Meloche, S. Angiotensin II stimulates serine phosphorylation of the adaptor protein Nck: physical association with the serine/threonine kinases PAK1 and casein kinase I. Biochem. J. 341(Pt 1), 217–223 (1999).CrossRefPubMedGoogle Scholar
  31. 31.
    Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183–192 (1998).CrossRefPubMedGoogle Scholar
  32. 32.
    Bokoch, G.M. et al. A GTPase-independent mechanism of p21-activated kinase activation: regulation by sphingosine and other biologically active lipids. J. Biol. Chem. 273, 8137–8144 (1998).CrossRefPubMedGoogle Scholar
  33. 33.
    Kissil, J.L. et al. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, PAK1. Mol. Cell 12, 841–849 (2003).CrossRefPubMedGoogle Scholar
  34. 34.
    Odero-Marah, V.A. et al. Maspin regulates different signaling pathways for motility and adhesion in aggressive breast cancer cells. Cancer Biol. Ther. 2, 398–403 (2003).PubMedGoogle Scholar
  35. 35.
    Talukder, A.H., Meng, Q. & Kumar, R. CRIPak, a novel endogenous PAK1 inhibitor. Oncogene 25, 1311–1319 (2006).CrossRefPubMedGoogle Scholar
  36. 36.
    Xia, C. et al. Regulation of the p21-activated kinase (PAK) by a human Gbeta -like WD-repeat protein, hPIP1. Proc. Natl. Acad. Sci. USA 98, 6174–6179 (2001).CrossRefPubMedGoogle Scholar
  37. 37.
    Koh, C.G., Tan, E.J., Manser, E. & Lim, L. The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr. Biol. 12, 317–321 (2002).CrossRefPubMedGoogle Scholar
  38. 38.
    Sells, M.A. et al. Human p21-activated kinase (PAK1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997).CrossRefPubMedGoogle Scholar
  39. 39.
    Sells, M.A., Boyd, J.T. & Chernoff, J. p21-activated kinase 1 (PAK1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145, 837–849 (1999).CrossRefPubMedGoogle Scholar
  40. 40.
    Kumar, R., Gururaj, A.E. & Barnes, C.J. p21-activated kinases in cancer. Nat. Rev. Cancer 6, 459–471 (2006).CrossRefPubMedGoogle Scholar
  41. 41.
    Stockton, R.A., Schaefer, E. & Schwartz, M.A. p21-activated kinase regulates endothelial permeability through modulation of contractility. J. Biol. Chem. 279, 46621–46630 (2004).CrossRefPubMedGoogle Scholar
  42. 42.
    Somlyo, A.P. & Somlyo, A.V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 83, 1325–1358 (2003).PubMedGoogle Scholar
  43. 43.
    Ke, Y., Wang, L., Pyle, W.G., de Tombe, P.P. & Solaro, R.J. Intracellular localization and functional effects of P21-activated kinase-1 (PAK1) in cardiac myocytes. Circ. Res. 94, 194–200 (2004).CrossRefPubMedGoogle Scholar
  44. 44.
    Webb, B.A. et al. PAK1 induces podosome formation in A7r5 vascular smooth muscle cells in a PIX-dependent manner. Am. J. Physiol. Cell Physiol. 289, C898–907 (2005).CrossRefPubMedGoogle Scholar
  45. 45.
    Deroanne, C., Vouret-Craviari, V., Wang, B. & Pouyssegur, J. EphrinA1 inactivates integrin-mediated vascular smooth muscle cell spreading via the Rac/PAK pathway. J. Cell Sci. 116, 1367–1376 (2003).CrossRefPubMedGoogle Scholar
  46. 46.
    Vidal, C., Geny, B., Melle, J., Jandrot-Perrus, M. & Fontenay-Roupie, M. Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin. Blood 100, 4462–4469 (2002).CrossRefPubMedGoogle Scholar
  47. 47.
    Shekarabi, M. et al. Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, PAK1, and N-WASP into an intracellular signaling complex that promotes growth cone expansion. J. Neurosci. 25, 3132–3141 (2005).CrossRefPubMedGoogle Scholar
  48. 48.
    Kim, M.D., Kamiyama, D., Kolodziej, P., Hing, H. & Chiba, A. Isolation of Rho GTPase effector pathways during axon development. Dev. Biol. 262, 282–293 (2003).CrossRefPubMedGoogle Scholar
  49. 49.
    Faure, S. et al. Xenopus p21-activated kinase 5 regulates blastomeres’ adhesive properties during convergent extension movements. Dev. Biol. 277, 472–492 (2005).CrossRefPubMedGoogle Scholar
  50. 50.
    Bisson, N., Poitras, L., Mikryukov, A., Tremblay, M. & Moss, T. Epha4 signaling regulates blastomere adhesion in the xenopus embryo by recruiting PAK1 to suppress Cdc42 function. Mol. Biol. Cell 18, 1030–1043 (2007).CrossRefPubMedGoogle Scholar
  51. 51.
    Schneeberger, D. & Raabe, T. Mbt, a Drosophila PAK protein, combines with Cdc42 to regulate photoreceptor cell morphogenesis. Development 130, 427–437 (2003).CrossRefPubMedGoogle Scholar
  52. 52.
    Albin, S.D. & Davis, G.W. Coordinating structural and functional synapse development: postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology. J. Neurosci. 24, 6871–6879 (2004).CrossRefPubMedGoogle Scholar
  53. 53.
    Chen, W., Chen, S., Yap, S.F. & Lim, L. The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRac1 and CDC42Ce at hypodermal cell boundaries during embryo elongation. J. Biol. Chem. 271, 26362–26368 (1996).CrossRefPubMedGoogle Scholar
  54. 54.
    Prigmore, E. et al. A 68-kDa kinase and NADPH oxidase component p67phox are targets for Cdc42Hs and Rac1 in neutrophils. J Biol. Chem. 270, 10717–10722 (1995).CrossRefPubMedGoogle Scholar
  55. 55.
    Ahmed, S. et al. Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox). J. Biol. Chem. 273, 15693–15701 (1998).CrossRefPubMedGoogle Scholar
  56. 56.
    Bokoch, G.M. et al. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J. Biol. Chem. 271, 25746–25749 (1996).CrossRefPubMedGoogle Scholar
  57. 57.
    del Pozo, M.A., Price, L.S., Alderson, N.B., Ren, X.D. & Schwartz, M.A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19, 2008–2014 (2000).CrossRefPubMedGoogle Scholar
  58. 58.
    Eblen, S.T., Slack, J.K., Weber, M.J. & Catling, A.D. Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol. Cell Biol. 22, 6023–6033 (2002).CrossRefPubMedGoogle Scholar
  59. 59.
    Slack-Davis, J.K. et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J. Cell Biol. 162, 281–291 (2003).CrossRefPubMedGoogle Scholar
  60. 60.
    Singh, R.R., Song, C., Yang, Z. & Kumar, R. Nuclear localization and chromatin targets of p21-activated kinase 1. J. Biol. Chem. 280, 18130–18137 (2005).CrossRefPubMedGoogle Scholar
  61. 61.
    Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).CrossRefPubMedGoogle Scholar
  62. 62.
    Summy, J.M. & Gallick, G.E. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 22, 337–358 (2003).CrossRefPubMedGoogle Scholar
  63. 63.
    Felding-Habermann, B. Integrin adhesion receptors in tumor metastasis. Clin. Exp. Metastasis 20, 203–213 (2003).CrossRefPubMedGoogle Scholar
  64. 64.
    Gabarra-Niecko, V., Schaller, M.D. & Dunty, J.M. FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev. 22, 359–374 (2003).CrossRefPubMedGoogle Scholar
  65. 65.
    McLean, G.W., Avizienyte, E. & Frame, M.C. Focal adhesion kinase as a potential target in oncology. Expert. Opin. Pharmacother. 4, 227–234 (2003).CrossRefPubMedGoogle Scholar
  66. 66.
    Menard, S., Pupa, S.M., Campiglio, M. & Tagliabue, E. Biologic and therapeutic role of HER2 in cancer. Oncogene 22, 6570–6578 (2003).CrossRefPubMedGoogle Scholar
  67. 67.
    Mendelsohn, J. & Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 21, 2787–2799 (2003).CrossRefPubMedGoogle Scholar
  68. 68.
    Frame, M.C. Src in cancer: deregulation and consequences for cell behaviour. Biochim. Biophys. Acta 1602, 114–130 (2002).PubMedGoogle Scholar
  69. 69.
    Pendergast, A.M. The Abl family kinases: mechanisms of regulation and signaling. Adv. Cancer Res. 85, 51–100 (2002).CrossRefPubMedGoogle Scholar
  70. 70.
    Malliri, A. & Collard, J.G. Role of Rho-family proteins in cell adhesion and cancer. Curr. Opin. Cell Biol. 15, 583–589 (2003).CrossRefPubMedGoogle Scholar
  71. 71.
    Sahai, E. & Marshall, C.J. RHO-GTPases and cancer. Nat. Rev. Cancer 2, 133–142 (2002).CrossRefPubMedGoogle Scholar
  72. 72.
    Osada, S., Izawa, M., Koyama, T., Hirai, S. & Ohno, S. A domain containing the Cdc42/Rac interactive binding (CRIB) region of p65PAK inhibits transcriptional activation and cell transformation mediated by the Ras-Rac pathway. FEBS Lett. 404, 227–233 (1997).CrossRefPubMedGoogle Scholar
  73. 73.
    Tang, Y. et al. Kinase-deficient PAK1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol. Cell Biol. 17, 4454–4464 (1997).PubMedGoogle Scholar
  74. 74.
    Mira, J.P., Benard, V., Groffen, J., Sanders, L.C. & Knaus, U.G. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc. Natl. Acad. Sci. USA 97, 185–189 (2000).CrossRefPubMedGoogle Scholar
  75. 75.
    Sachdev, P., Zeng, L. & Wang, L.H. Distinct role of phosphatidylinositol 3-kinase and Rho family GTPases in Vav3-induced cell transformation, cell motility, and morphological changes. J. Biol. Chem. 277, 17638–17648 (2002).CrossRefPubMedGoogle Scholar
  76. 76.
    Adam, L. et al. Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J. Biol. Chem. 273, 28238–28246 (1998).CrossRefPubMedGoogle Scholar
  77. 77.
    Salh, B., Marotta, A., Wagey, R., Sayed, M. & Pelech, S. Dysregulation of phosphatidylinositol 3-kinase and downstream effectors in human breast cancer. Int. J. Cancer 98, 148–154 (2002).CrossRefPubMedGoogle Scholar
  78. 78.
    Wang, R.A., Mazumdar, A., Vadlamudi, R.K. & Kumar, R. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J. 21, 5437–5447 (2002).CrossRefPubMedGoogle Scholar
  79. 79.
    Wang, R.A., Zhang, H., Balasenthil, S., Medina, D. & Kumar, R. PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25, 2931–2936 (2006).CrossRefPubMedGoogle Scholar
  80. 80.
    Carter, J.H. et al. PAK-1 expression increases with progression of colorectal carcinomas to metastasis. Clin. Cancer Res. 10, 3448–3456 (2004).CrossRefPubMedGoogle Scholar
  81. 81.
    Kissil, J.L., Johnson, K.C., Eckman, M.S. & Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J. Biol. Chem. 277, 10394–10399 (2002).CrossRefPubMedGoogle Scholar
  82. 82.
    Balasenthil, S. et al. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J. Biol. Chem. 279, 1422–1428 (2004).CrossRefPubMedGoogle Scholar
  83. 83.
    Jung, I.D. et al. Activation of p21-activated kinase 1 is required for lysophosphatidic acid-induced focal adhesion kinase phosphorylation and cell motility in human melanoma A2058 cells. Eur. J. Biochem. 271, 1557–1565 (2004).CrossRefPubMedGoogle Scholar
  84. 84.
    Schraml, P. et al. Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. Am. J. Pathol. 163, 985–992 (2003).PubMedGoogle Scholar
  85. 85.
    Holm, C. et al. High PAK1 expression and nuclear localization is associated with lack of tamoxifen response in human premenopausal breast cancer and experimental models. J. Natl. Cancer Inst. 98, 671–680 (2006).PubMedCrossRefGoogle Scholar
  86. 86.
    Mahlamaki, E.H. et al. High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia 6, 432–439 (2004).CrossRefPubMedGoogle Scholar
  87. 87.
    Huang, Z., Traugh, J.A. & Bishop, J.M. Negative control of the Myc protein by the stress-responsive kinase PAK2. Mol. Cell Biol. 24, 1582–1594 (2004).CrossRefPubMedGoogle Scholar
  88. 88.
    Brzeska, H., Knaus, U.G., Wang, Z.Y., Bokoch, G.M. & Korn, E.D. p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I. Proc. Natl. Acad. Sci. USA 94, 1092–1095 (1997).CrossRefPubMedGoogle Scholar
  89. 89.
    Sanders, L.C., Matsumura, F., Bokoch, G.M. & De Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085 (1999).CrossRefPubMedGoogle Scholar
  90. 90.
    Vadlamudi, R.K. et al. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell 5, 575–585 (2004).CrossRefPubMedGoogle Scholar
  91. 91.
    Lu, J. et al. Identification of dynein light chain 2 as an interaction partner of p21-activated kinase 1. Biochem. Biophys. Res. Commun. 331, 153–158 (2005).CrossRefPubMedGoogle Scholar
  92. 92.
    Edwards, D.C., Sanders, L.C., Bokoch, G.M. & Gill, G.N. Activation of LIM-kinase by PAK1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1, 253–259 (1999).CrossRefPubMedGoogle Scholar
  93. 93.
    Vadlamudi, R.K. et al. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat. Cell Biol. 4, 681–690 (2002).CrossRefPubMedGoogle Scholar
  94. 94.
    Vadlamudi, R.K., Li, F., Barnes, C.J., Bagheri-Yarmand, R. & Kumar, R. p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep. 5, 154–160 (2004).CrossRefPubMedGoogle Scholar
  95. 95.
    Hashimoto, S., Tsubouchi, A., Mazaki, Y. & Sabe, H. Interaction of paxillin with p21-activated Kinase (PAK): association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J. Biol. Chem. 276, 6037–6045 (2001).CrossRefPubMedGoogle Scholar
  96. 96.
    Stofega, M.R., Sanders, L.C., Gardiner, E.M. & Bokoch, G.M. Constitutive p21-activated kinase (PAK) activation in breast cancer cells as a result of mislocalization of PAK to focal adhesions. Mol. Biol. Cell 15, 2965–2977 (2004).CrossRefPubMedGoogle Scholar
  97. 97.
    Goto, H. et al. Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes Cells 7, 91–97 (2002).CrossRefPubMedGoogle Scholar
  98. 98.
    Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A. & Hall, A. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J. Biol. Chem. 276, 1677–1680 (2001).CrossRefPubMedGoogle Scholar
  99. 99.
    Zenke, F.T. et al. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J. Biol. Chem. 279, 18392–18400 (2004).CrossRefPubMedGoogle Scholar
  100. 100.
    Vadlamudi, R.K. et al. p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol. Cell Biol. 25, 3726–3736 (2005).CrossRefPubMedGoogle Scholar
  101. 101.
    Royal, I., Lamarche-Vane, N., Lamorte, L., Kaibuchi, K. & Park, M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol. Biol. Cell 11, 1709–1725 (2000).PubMedGoogle Scholar
  102. 102.
    Barrallo-Gimeno, A. & Nieto, M.A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151–3161 (2005).CrossRefPubMedGoogle Scholar
  103. 103.
    Come, C., Arnoux, V., Bibeau, F. & Savagner, P. Roles of the transcription factors snail and slug during mammary morphogenesis and breast carcinoma progression. J. Mammary Gland Biol. Neoplasia 9, 183–193 (2004).CrossRefPubMedGoogle Scholar
  104. 104.
    Yang, Z. et al. PAK1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Res. 65, 3179–3184 (2005).PubMedGoogle Scholar
  105. 105.
    Barnes, C.J. et al. Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat. Struct. Biol. 10, 622–628 (2003).CrossRefPubMedGoogle Scholar
  106. 106.
    Knaus, U.G., Morris, S., Dong, H.J., Chernoff, J. & Bokoch, G.M. Regulation of human leukocyte p21-activated kinases through G protein – coupled receptors. Science 269, 221–223 (1995).CrossRefPubMedGoogle Scholar
  107. 107.
    Shalom-Barak, T. & Knaus, U.G. A p21-activated kinase-controlled metabolic switch up-regulates phagocyte NADPH oxidase. J. Biol. Chem. 277, 40659–40665 (2002).CrossRefPubMedGoogle Scholar
  108. 108.
    Gururaj, A., Barnes, C.J., Vadlamudi, R.K. & Kumar, R. Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase. Oncogene 23, 8118–8127 (2004).CrossRefPubMedGoogle Scholar
  109. 109.
    Zhang, S. et al. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator PAK1. J. Biol. Chem. 270, 23934–23936 (1995).CrossRefPubMedGoogle Scholar
  110. 110.
    Brown, J.L. et al. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr. Biol. 6, 598–605 (1996).CrossRefPubMedGoogle Scholar
  111. 111.
    Frost, J.A., Xu, S., Hutchison, M.R., Marcus, S. & Cobb, M.H. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol. Cell Biol. 16, 3707–3713 (1996).PubMedGoogle Scholar
  112. 112.
    Eblen, S.T., Slack, J.K., Weber, M.J. & Catling, A.D. Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol. Cell Biol. 22, 6023–6033 (2002).CrossRefPubMedGoogle Scholar
  113. 113.
    Sun, H., King, A.J., Diaz, H.B. & Marshall, M.S. Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and PAK. Curr. Biol. 10, 281–284 (2000).CrossRefPubMedGoogle Scholar
  114. 114.
    Schurmann, A. et al. p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol. Cell Biol. 20, 453–461 (2000).CrossRefPubMedGoogle Scholar
  115. 115.
    Wolf, D. et al. HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat. Med. 7, 1217–1224 (2001).CrossRefPubMedGoogle Scholar
  116. 116.
    Yuan, Z.Q. et al. ArgBP2gamma interacts with Akt and p21-activated kinase-1 and promotes cell survival. J. Biol. Chem. 280, 21483–21490 (2005).CrossRefPubMedGoogle Scholar
  117. 117.
    Jin, S., Zhuo, Y., Guo, W. & Field, J. p21-activated Kinase 1 (PAK1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J. Biol. Chem. 280, 24698–24705 (2005).CrossRefPubMedGoogle Scholar
  118. 118.
    Mazumdar, A. & Kumar, R. Estrogen regulation of PAK1 and FKHR pathways in breast cancer cells. FEBS Lett. 535, 6–10 (2003).CrossRefPubMedGoogle Scholar
  119. 119.
    Vadlamudi, R.K. et al. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J. Biol. Chem. 275, 36238–36244 (2000).CrossRefPubMedGoogle Scholar
  120. 120.
    Bagheri-Yarmand, R. et al. Etk/Bmx tyrosine kinase activates PAK1 and regulates tumorigenicity of breast cancer cells. J. Biol. Chem. 276, 29403–29409 (2001).CrossRefPubMedGoogle Scholar
  121. 121.
    Faure, S. et al. Control of G2/M transition in Xenopus by a member of the p21-activated kinase (PAK) family: a link between protein kinase A and PAK signaling pathways? J. Biol. Chem. 274, 3573–3579 (1999).CrossRefPubMedGoogle Scholar
  122. 122.
    Chung, C.Y. & Firtel, R.A. PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J. Cell Biol. 147, 559–576 (1999).CrossRefPubMedGoogle Scholar
  123. 123.
    Cvrckova, F., De Virgilio, C., Manser, E., Pringle, J.R. & Nasmyth, K. Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev. 9, 1817–1830 (1995).CrossRefPubMedGoogle Scholar
  124. 124.
    Qyang, Y. et al. The p21-activated kinase, Shk1, is required for proper regulation of microtubule dynamics in the fission yeast, Schizosaccharomyces pombe. Mol. Microbiol. 44, 325–334 (2002).CrossRefPubMedGoogle Scholar
  125. 125.
    Adam, L., Vadlamudi, R., Mandal, M., Chernoff, J. & Kumar, R. Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J. Biol. Chem. 275, 12041–12050 (2000).CrossRefPubMedGoogle Scholar
  126. 126.
    Nowak, S.J. & Corces, V.G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220 (2004).CrossRefPubMedGoogle Scholar
  127. 127.
    Li, F. et al. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep. 3, 767–773 (2002).CrossRefPubMedGoogle Scholar
  128. 128.
    Banerjee, M., Worth, D., Prowse, D.M. & Nikolic, M. PAK1 phosphorylation on t212 affects microtubules in cells undergoing mitosis. Curr. Biol. 12, 1233–1239 (2002).CrossRefPubMedGoogle Scholar
  129. 129.
    Thiel, D.A. et al. Cell cycle-regulated phosphorylation of p21-activated kinase 1. Curr. Biol. 12, 1227–1232 (2002).CrossRefPubMedGoogle Scholar
  130. 130.
    Muranen, T., Gronholm, M., Renkema, G.H. & Carpen, O. Cell cycle-dependent nucleocytoplasmic shuttling of the neurofibromatosis 2 tumour suppressor merlin. Oncogene 24, 1150–1158 (2005).CrossRefPubMedGoogle Scholar
  131. 131.
    Kohno, M. & Pouyssegur, J. Targeting the ERK signaling pathway in cancer therapy. Ann. Med. 38, 200–211 (2006).CrossRefPubMedGoogle Scholar
  132. 132.
    Frost, J.A. et al. Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J. Biol. Chem. 275, 19693–19699 (2000).CrossRefPubMedGoogle Scholar
  133. 133.
    Lee, S.R. et al. AR and ER interaction with a p21-activated kinase (PAK6). Mol. Endocrinol. 16, 85–99 (2002).CrossRefPubMedGoogle Scholar
  134. 134.
    Yang, F. et al. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J. Biol. Chem. 276, 15345–15353 (2001).CrossRefPubMedGoogle Scholar
  135. 135.
    Michalides, R. et al. Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. Cancer Cell 5, 597–605 (2004).CrossRefPubMedGoogle Scholar
  136. 136.
    Rayala, S.K. et al. Functional regulation of oestrogen receptor pathway by the dynein light chain 1. EMBO Rep. 6, 538–544 (2005).CrossRefPubMedGoogle Scholar
  137. 137.
    Alahari, S.K. Nischarin inhibits Rac induced migration and invasion of epithelial cells by affecting signaling cascades involving PAK. Exp. Cell Res. 288, 415–424 (2003).CrossRefPubMedGoogle Scholar
  138. 138.
    Huang, Q., Shen, H.M. & Ong, C.N. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cell Mol. Life Sci. 62, 1167–1175 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Anupama E. Gururaj
  • Rakesh Kumar
    • 1
  1. 1.Department of Molecular and Cellular OncologyThe University of Texas, MD Anderson Cancer CenterHoustonUSA

Personalised recommendations