Skip to main content

Deterministic Methods for Prediction of Tropical Cyclone Tracks

  • Chapter
Modelling and Monitoring of Coastal Marine Processes

Abstract

Prediction of the tracks of tropical cyclones is one of the most difficult and challenging problems of current international tropical cyclone research. The focal point of this research is to minimize the forecast errors to the extent that the forecast can be used effectively for issuing appropriate warnings for disaster management purposes. The level of importance is reflected in the large number of forecast techniques that have been developed using wide range of approaches, from empirical through statistical and dynamical. However, due to complexities of the problem, no single technique has proven to have outstanding performance relative to the others. Figure 1 is a good example of the performance of eight different operational track prediction models for hurricane ‘Elena’ of August, 1985. All the eight predicted tracks are in different directions, but the hurricane moved unexpectedly in yet another direction far apart from all the above tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, E. and Hollingsworth, A. (1988). Typhoon bogus observations in the ECMWF data assimilation system. Technical Memo. No. 148, ECMWF.

    Google Scholar 

  • Anthes, R.A. (1982). Tropical Cyclones: Their evolution, structure and effects. Meteor. Mongr., Vol 19, Amer. Meteor. Soc., Boston, MA, 208 pp.

    Google Scholar 

  • Bansal, R.K. and Dutta, R.K. (1974). Indian J. Met. Geophys., 25.

    Google Scholar 

  • Bao, C., Wei, R. and Huang, C. (1979). On the activity of the equatorial anticyclone and its influence upon the typhoon track. Sci. Atmos. Sinica., 2, 141–149.

    Google Scholar 

  • Bender, M.A., Ross, R.J., Tuleya, R.E. and Kurihara, Y. (1993). Improvements in tropical cyclone track and intensity forecast using the GFDL intialization system. Mon. Wea. Rev., 121, 2046–2061.

    Article  Google Scholar 

  • Brand, S. (1970). Interaction of binary tropical cyclones in the western North Pacific Ocean. J. Appl. Meteor., 9, 433–441.

    Article  Google Scholar 

  • Brand, S., Buenafe, C.A. and Hamlton, H.D. (1981). Comparison of tropical cyclone motion and environmental steering. Mon. Wea. Rev., 104, 908–909.

    Article  Google Scholar 

  • Carr, L.E. and Elsberry, R.L. (1990). Observational evidence for beta induced tropical cyclone motion relative to steering. J. Atmos. Sci., 47, 542–546.

    Article  Google Scholar 

  • Chan, J.C.L. and Gray, W.M. (1982). Tropical cyclone movement and surrounding flow relationship. Mon. Wea. Rev., 110, 1354–1374.

    Article  Google Scholar 

  • Chan, J.C.L., Williams, R.T. (1987). Analytical and numerical studies of beta effect in tropical cyclone motion. Part I: Zero mean flow. J. Atom. Sci., 44, 1257–1265.

    Article  Google Scholar 

  • Chen, L. (1985). Operational forecast techniques, Rapporteur report, International Workshop on Tropical Cyclones (IWTC). Bangkok, Thailand, 1985.

    Google Scholar 

  • Chen, L. and Ding, Y. (1979). An introduction to the western Pacific typhoons. Science Publishing House, Beijing, 491 pp.

    Google Scholar 

  • Chen, D.R., Yeh, T.C., Huang, K.N., Peng, M.S. and Chang, S.W. (1995). A new operational typhoon track prediction system at the central weather Bureau in Taiwan. 21th Conf. Hurr. Trop. Meteor., Amer. Meteor. Soc., Boston, MA 02108, 50–51.

    Google Scholar 

  • Chin, P.C. (1970). The ‘Control Point’ method for the prediction of Tropical Cyclone movement. Tech. Note 30, Royal Observatory, Hong Kong, 25 pp.

    Google Scholar 

  • Chin, P.C. (1972). Tropical cyclone climatology for the China Seas and western Pacific. Tech. Memoir, 11, Royal Observatory, Hong Kong.

    Google Scholar 

  • Davidson, N.E., Wadsley, J., Puri, K., Kurihara, K. and Ueno, M. (1993). Implementation of JMA typhoon bogus in the BMRC tropical prediction system. Jour. Met. Soc. Jap., 71, 437–467.

    Google Scholar 

  • Das, P.K. and Bose, B.L. (1958). Numerical prediction of the movement of Bay depressions. Indian J. Met. Geophys., 9(1–4), 225–232.

    Google Scholar 

  • Das, P.K. (1972). Prediction model for storm surges in the Bay of Bengal. Nature, 239, 211–213.

    Article  Google Scholar 

  • Das, P.K. (1981). Storm surges in the Bay of Bengal. Indian Acad. Sci. (Engg. Sci.), 4, 269–276.

    Google Scholar 

  • Das, P.K., Sinha, M.C. and Balasubramanyam, V. (1974). Storm surges in the Bay of Bengal. Quart. J.R. Met. Soc., 100, 437–449.

    Google Scholar 

  • Das, P.K., Dube, S.K., Mohanty, U.C., Sinha, P.C. and Rao, A.D. (1983). Numerical Simulation of the surge generated by the June 1982 Orissa Cyclone. Mausam, 34, 359–366.

    Google Scholar 

  • Datta, R.K., Bansal, R.K. and Bindra, M.M.S. (1981). Verification of forecast of movement of cyclones by Analogue method. Vayumandal, 11(1&2), 14–18.

    Google Scholar 

  • DeMaria, M. (1983). Experiments with a spectral tropical cyclone model. Dept. of Atmos. Sci., Paper No. 371, CSU, Ford Collins, CO 80523, 224 pp.

    Google Scholar 

  • DeMaria, M., Aberson, S.D., Ooyama, K.V. and Lord, S.S. (1992). A nested spectral model for hurricane track forecasting. Mon. Wea. Rev., 120, 1628–1643.

    Article  Google Scholar 

  • Dong, K. and Neumann, C.J. (1983). On the relative motion of binary tropical cyclone. Mon. Wea. Rev., 111, 945–953.

    Article  Google Scholar 

  • Dunn, G.E. and Miller, B.I. (1964). Atlantic hurricanes (Revised edition). Louisiana State University Press., 377 pp.

    Google Scholar 

  • Elsberry, R.L. (1986). Some issues related to the theory of tropical cyclone motion. Tech. Report NPS, 63-86-005, Naval Postgraduate School, Monterey, CA, 23 p.

    Google Scholar 

  • Elsberry, R.L. and Harrison, E.J., Jr. (1972). Effects of parameterization of latent heating in a tropical prediction model. J. Appl. Meteor., 11, 255–267.

    Article  Google Scholar 

  • Elsberry, R.L. and Bohner, R.H., Jr. (1992). Three-component decomposition of tropical cyclone wind fields: Relation to tropical cyclone motion. In: Tropical Cyclone Disasters (Eds. J. Lighthill, K. Emanuel, G.J. Holland and Z. Zhang), Peking University Press.

    Google Scholar 

  • Evans, J.L., Holland, G.J. and Elsberry, R.L. (1991). Interactions between a barotropic vortex and an idealised sub-tropical ridge, I: Vortex motion. J. Atmos. Sci., 48, 301–314.

    Article  Google Scholar 

  • Fett, R.W. and Brand, S. (1975). Tropical cyclone movement forecasts based on observations from satellites. J. Appl. Meteor., 14, 452–465.

    Article  Google Scholar 

  • Fiorino, M.J. and Elsberry, R.L. (1989). Contribution to tropical cyclone motion by small, medium and large scales in the initial vortex. Mon. Wea. Rev., 117, 721–727.

    Article  Google Scholar 

  • Fiorino, M.J., Goerss, J.S., Jensen, J.J., Harrison, E.J., Jr. (1993). An evaluation of the real-time tropical cyclone forecast skill of the Navy operational Global Atmospheric Prediction System in the western North Pacific. Wea. Forec., 8, 3–24.

    Article  Google Scholar 

  • Franklin, J.L. (1990). Dropsonde observations of environmental flow of Hurricane Josephine (1984): Relationship to vortex motion. Mon. Wea. Rev., 118, 2732–2744.

    Article  Google Scholar 

  • George, J.E. and Gray, W.M. (1976). Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 1252–1264.

    Article  Google Scholar 

  • Ghosh, S.K. (1977). Prediction of storm surges on the east coast of India. Indian J. Met. Hydrol. Geophys., 28, 157–168.

    Google Scholar 

  • Ghosh, S.K. (1985). Probable maximum storm surges on the coasts of India and Bangladesh. In: Aspects of Mechanics (ed.) D.K. Sinha. South Asian Publishers, 73–92.

    Google Scholar 

  • Goerss, J.S., Brody, L.R. and Jeffries, R.L. (1991). Assimilation of synthetic tropical cyclone observation into the Navy operational Global Atmospheric Prediction System. 9th Conf. Num. Wea. Pred., Denver, CO, Amer. Meteor. Soc., Boston, MA 02108, 638–641.

    Google Scholar 

  • Gupta, R.N. and Datta, R.K. (1971). Prepub. Sci. Rep. No. 157, India Met. Deptt.

    Google Scholar 

  • Hall, C.D. (1987). Verification of global model forecasts of tropical cyclones during 1986. Meteor. Mag., 116, 216–219.

    Google Scholar 

  • Harrison, E.J., Jr. (1973). Three-dimensional numerical simulations of tropical systems utilising nested finite grids. J. atmos. Sci., 30, 1528–1543.

    Article  Google Scholar 

  • Harrison, E.J., Jr. (1969). Experiments with a primitive equation model designed for tropical application. M.S. Thesis, Naval Postgraduate School, Monterey, CA, 54 pp.

    Google Scholar 

  • Harrison, E.J., Jr. and Fiorino, M. (1982). A comprehensive test of the Navy nested tropical cyclone model. Mon. Wea. Rev., 109, 646–650.

    Google Scholar 

  • Hinsman, D.E. (1977). Preliminary results from the Fleet Numerical Weather central tropical cyclone model. 3rd Conf. on Numerical Wea. Prediction, Omaha, NE, 26–28 April 1977, 19–34.

    Google Scholar 

  • Hodur, R.M. (1987). Tropical cyclone track prediction in a regional model. 18th Con. Hurr. Trop. Meteor., San Diego, Amer. Meteor. Soc., 174–175.

    Google Scholar 

  • Hodur, R.M. and Burk, S.D. (1978). The Fleet Numerical weather central tropical cyclone model: Comparison of cyclic and one way interactive boundary conditions. Mon. Wea. Rev., 106, 477–491.

    Article  Google Scholar 

  • Holland, C.J. (1983). Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 428–442.

    Article  Google Scholar 

  • Holland, G.J. (1984). Tropical cyclone motion: A comparison of theory and observations. J. Atmos. Sci., 41, 68–75.

    Article  Google Scholar 

  • Holland, G.J. and Pan, C.S. (1981). On the broad scale features of tropical cyclone movement in the Australian region. Tech. report No 31, Bureau of Meteorology, PO Box No 1289 K, Melbourne, VIC 3001, Australia, 25 pp.

    Google Scholar 

  • Holland, G.J., Leslie, L.M., Ritchie, E.A., Dietachmayer, G.S., Klink, M. and Powers, P.E. (1991). An interactive analysis and forecasting system for tropical cyclone motion. Wea. Forec., 6, 415–423.

    Article  Google Scholar 

  • Holland, G.J. and Lander, M. (1993). On the meandering nature of tropical cyclones, J. Atmos. Sci., 50, 1254–1266.

    Article  Google Scholar 

  • Hope, J.R. and Neumann, C.J. (1971). Computer methods applied to Atlantic Area Tropical cyclone climatology. Mariners Weather Log, 15, 272–278.

    Google Scholar 

  • Hovermale, J.B. and Livezey, R.E. (1977). Three-year performance characteristics of the NMC hurricane model. 11th Conf. Hurr. Trop. Meteor., Amer. Meteor. Soc., Boston, MA 02108, 121–125.

    Google Scholar 

  • Iwasaki, T., Nakano, H. and Sugi, M. (1987). The performance of a typhoon track prediction model with cumulus parametrization. J. Meteor. Soc. Japan, 65, 555–570.

    Google Scholar 

  • Jones, R.W. (1977). Vortex motion in Tropical cyclone model. J. Atmos. Sci., 34, 1518–1527.

    Article  Google Scholar 

  • Johns, B., Dube, S.K., Mohanty, U.C. and Sinha, P.C. (1981). Numerical simulation of surge generated by the 1077 Andhra cyclone. Quart. J. Roy. Met. Soc., 107, 915–939.

    Google Scholar 

  • Johns, B., Dube, S.K., Sinha, P.C., Mohanty, U.C. and Rao, A.D. (1982). The simulation of a continuously deforming lateral boundary in problems involving the shallow water equations. Computers and Fluids, 10, 105–116.

    Article  Google Scholar 

  • Kasahara, A. (1957). The numerical prediction of hurricane movement with the barotropic model. J. Met., 14, 386–402.

    Google Scholar 

  • Kasahara, A. and Platzman, G.W. (1963). Interaction of a hurricane with the steering flow and its effect upon the hurricane trajectory. Tellus, 15, 322–335.

    Article  Google Scholar 

  • Keenan, T.D. (1982). A diagnostic study of tropical cyclone forecasting in Australia. Aust. Met. Mag., 30, 69–80.

    Google Scholar 

  • Keenan, T.D. (1984). Statistical tropical cyclone forecasting techniques for southern hemisphere. Naval Environmental Prediction Research Facility, Tech. Rep. TR 84-07, 52 pp.

    Google Scholar 

  • Keenan, T.D. (1985). Statistical forecasting of tropical cyclone movement in the Australian region. Quart. J.R. Met. Soc., 111, 603–615.

    Article  Google Scholar 

  • Keenan, T.D. and Woodcock, F. (1981). Objective tropical cyclone movement forecasts using synoptic and track analogue information. Meteor. Note 121, Bureau of Meteor., Australia.

    Google Scholar 

  • Krishnamurti, T.N., Oosterhof, D. and Diffnon, N. (1989). Hurricane prediction with a high resolution global model. Mon. Wea. Rev., 117, 631–669.

    Article  Google Scholar 

  • Krishnamurti, T.N., Bedi, H.S., Yap, K.S. and Oosterhof, D. (1993). Hurricane forecasts in the FSU models. Adv. Atmos. Sci., 10, 121–131.

    Article  Google Scholar 

  • Kumar, S. and Prasad, K. (1973). Indian J. Met. Geophys., 24.

    Google Scholar 

  • Kuo, H.L. (1969). Motions of vortices and circulating cylinder in shear flow with friction. J. Atmos. Sci., 26, 390–398.

    Article  Google Scholar 

  • Kurihara, Y., Bender, M.A., Tuleya, R.E. and Ross, R.J. (1993). Hurricane forecasting with GFDL automated prediction system. Preprints 20th Conf. Hurr. Trop. Meteor., Amer. Meteor. Soc., Boston, MA 02108, 323–326.

    Google Scholar 

  • Kurihara, Y., Bender, M.A., Ross, R.J. (1993). An intialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.

    Article  Google Scholar 

  • Kuuse, J. (1979). Statistical-synoptic prediction of tropical cyclone motion. Aust. Conf. on Tropical Meteorology, March 1983.

    Google Scholar 

  • Lajoie, F.A. and Nicholls, N. (1974). A relationship between the direction of movement of tropical cyclones and the structure of their cloud systems. Tech. Rep. 11, Bureau of Meteorology, Melbourne, Australia, 22 pp.

    Google Scholar 

  • Lajoie, F.A. (1976). On the direction of movement of tropical cyclones. Aust. Met. Mag., 24, 95–104.

    Google Scholar 

  • Lander, M. and Holland, G.J. (1994). On the interaction of tropical cyclone scale vortices. Part I: Observations. Quart. J. Roy. Meteor. Soc., 119, 1347–1361.

    Article  Google Scholar 

  • Lange, A. and Hellsten, E (1984) Results of the WMO/CAS NWP data study and inter-comparison project for forecasting for the Northern Hemisphere in 1983. Short and Medium-range weather Prediction Research Publication Series, No. 7. World Meteorological Organization.

    Google Scholar 

  • Lord, S.J. (1991). A bogussing system for vortex circulation in the National Meteorological Centre global model, Preprints. 19th Conf. Hurr. Trop. Meteor., Amer. Meteor. Soc., Boston, MA 02108, 328–330.

    Google Scholar 

  • Lord, S. and Franklin, J.L. (1987). The environment of hurricane Debby (1992). Part I: Winds. Mon. Wea Rev., 115, 2760–2780.

    Article  Google Scholar 

  • Lourensz, R.S. (1981). Tropical cyclones in the Australian region July 1909 to June 1981. Met. Summary, Bureau of Meterology, PO Box 1289 K, Melbourne, Vic 3001, Australia, 94 pp.

    Google Scholar 

  • Marks, D.G. (1989). The beta and advection model for tropical cyclone track forecasting. Extended abstract. 18th Tech. Conf. Hurr. Trop. Meteor., Amer. Meteor. Soc., Boston, M 02108, 38–39.

    Google Scholar 

  • Mathur, M.B. (1974). A multiple grid primitive equation model to simulate the development of an asymmetric hurricane (Isbell, 1964). J. Atmos. Sci., 31, 371–392.

    Article  Google Scholar 

  • Mathur, M.B. (1991). The National Meteorological Centre’s Quasi-Lagrangian model for hurricane prediction. Mon. Wea. Rev., 119, 1419–1447.

    Article  Google Scholar 

  • Mathur, M.B. and Shapiro, A.M. (1992). A procedure to reduce northward drift of tropical storms in a numerical model. Tech. Memo. NWS NMC 71, National Weather Service, Washington, DC, 20 pp.

    Google Scholar 

  • McBride, J.L. (1986). Observational analysis of tropical cyclone formation. J. Atom. Sci., 38, 1117–1166.

    Article  Google Scholar 

  • Miller, M.J. (1992). The analysis and prediction of tropical cyclones by the ECMWF global forecasting system: Progress, problems and prospects. In: Tropical Cyclone Disasters, J. Lighthill, Z. Zhemin, G. Holland, and K. Emanuel (Eds.), Peking University Press, 220–231.

    Google Scholar 

  • Miller, B.I., Hill, E.C. and Chase, P.P. (1968). A revised technique for forecasting hurricane movement by statistical methods. Mon. Wea. Rev., 96, 540–548.

    Article  Google Scholar 

  • Miller, B.I.,(1969). Experiments in forecasting hurricane development with real data. ESSA Tech. Memo., ERLTM-NHRL, 85, 28 pp.

    Google Scholar 

  • Miller, B.I., Chase, P.P. and Jarvinen, B.R. (1972). Numerical prediction of tropical weather systems. Mon. Wea. Rev., 100, 825–835.

    Article  Google Scholar 

  • Mohanty, U.C. (1978). Tropical cyclones in the Bay of Bengal and objective methods for prediction of their movement. Ph. D. thesis, Odessa Hydro-Meterological Institute, USSR.

    Google Scholar 

  • Mohanty, U.C. (1979). Statistical method of forecasting tropical cyclones. Meteorol. Climatol. Hydrol., 15, 16–22.

    Google Scholar 

  • Mohanty, U.C. (1980). An objective method of forecasting the movement of tropical cyclones in the Bay of Bengal based on a number of statistical models. WMO symposium on probabilities and statistical methods in weather forecasting. Nice, France (Geneva, WMO), 359–364.

    Google Scholar 

  • Mohanty, U.C. (1994). Tropical cyclones in the Bay of Bengal and deterministic methods for prediction of their trajectories. Sadhana, Acad. Proc. in Engg. Sci., 19(4), 567–582.

    Google Scholar 

  • Morris, R.M. and Hall, C.D. (1987). Forecasting of tracks of tropical cyclones with the UK operational global model ESCAP/WMO Typhoon Committee Annual Review, 1987, Typhoon Committee, Secretairat, UNDP, Manila, Philipines. 102–105.

    Google Scholar 

  • Neumann, C.J. (1979). A guide to Atlantic and Eastern Pacific models for prediction of tropical cyclone motion. NOAA Tech. Memo., NWS. NHC-11, 26 pp.

    Google Scholar 

  • Neumann, C.J. (1981). Trends in forecasting of Atlantic tropical Cyclones. Bull. Amer. Soc., 62, 1473–1485.

    Google Scholar 

  • Neumann, C.J., Hope, J.R. and Miller, B.I. (1972). A statistical method of combining synoptic and empirical tropical cyclone prediction system. NOAA Tech. Memo., NWS, SR-63, Washington, DC, 32 pp.

    Google Scholar 

  • Neumann, C.J. and Lowrence, M.B. (1975). An operational experimental in the statistical-dynamical prediction of tropical cyclone motion. Mon. Wea. Rev., 103, 665–675.

    Article  Google Scholar 

  • Neumann, C.J. and Mandal, G.S. (1978). Statistical prediction of tropical storm motion over the Bay of Bengal and Arabian Sea. Indian J. Met. Hydrol. Geophys., 29, 487–500.

    Google Scholar 

  • Ookochi, Y. (1978). Preliminary test of typhoon forecast with a moving multi-nested grid (MNG). J. Meteor. Soc. Japan, 56, 571–583.

    Google Scholar 

  • Pike, A.C. (1985). Geopotential heights and thickness as predictors of Atlantic tropical cyclone motion and intensity. Mon. Wea. Rev., 113, 930–939.

    Article  Google Scholar 

  • Pike, A.C. and Neumann, C.J. (1987). The variation of track forecast difficulty among tropical cyclone basins. Wea. Forec., 2, 237–241.

    Article  Google Scholar 

  • Prasad, K. (1990). Synthetic observations for representation of tropical cyclones in NWP data assimilation systems. Proc. International sympoium, on assimilation of observations in Meteorology and Oceanography, Clermount-Ferrand, France, July 9–13, 1990.

    Google Scholar 

  • Puri, K., Davidson, N.E., Leslie, L.M., and Lagan, L.W. (1992). The BMRC tropical limited area model. Aust. Meteor. Mag., 40, 81–104.

    Google Scholar 

  • Radford, A.M., Heming, J.T. and Chan, J.C.L. (1995). A new TC bogus scheme at the UK Met Office. Preprints, 21st Tech. Conf. Hurr. Trop. Meteor., Amer Meteor. Soc., Boston, MA 02108, 243–245.

    Google Scholar 

  • Ramage, C.S. (1974). The typhoons of October 1970 in the South China Sea: Intensification, decay and ocean interaction. J. Appl. Met., 13, 739–751.

    Article  Google Scholar 

  • Ramanathan, Y. and Bansal, R.K. (1977). Indian J. Met. Hydrol. Geophys., 28

    Google Scholar 

  • Rao, G.V. (1970). An analytical study of the differential frictional effect on vortex movement. Mon. Wea. Rev., 98, 132–135.

    Article  Google Scholar 

  • Riehl, H. and Haggard, W.H. (1953). Prediction of tropical cyclones. Res. Rpt. No. 2, Applied Research. Operational Weather Analyses, Bureau of Aeronautics, Proj. AROWA, Norfolk, Virginia.

    Google Scholar 

  • Rossby, C.G. (1948). On displacements and intensity changes of atmospheric vortices. J. Mar. Res., 7, 175–187.

    Google Scholar 

  • Sasaki, Y. and Miyakodo, K. (1954). Numerical forecasting of the movement of cyclone. J. Met. Soc. Japan, 32, 325–335.

    Google Scholar 

  • Shapiro, L.J. and Ooyama, K.V. (1990). Barotropic vortex evolution on a beta plane. J. Atmos. Sci., 47, 170–187.

    Article  Google Scholar 

  • Sikka, D.R. (1975). Forecasting the movement of tropical cyclones in the Indian seas by non-divergent barotropic model. Indian J. Met. Hydrol. Geophys., 26, 323–325.

    Google Scholar 

  • Sikka, D.R. and Suryanarayana, R. (1972). Forecasting the movement of tropical storms/depressions in the Indian region by a computer oriented technique using climatology and persistence. Indian J. Met. Geophys. 23, 35–40.

    Google Scholar 

  • Singh, S.S. and Saha K.R. (1976). Numerical experiments with a primitive equation barotropic model for prediction of movement of monsoon depressions and tropical cyclones. J. Appl. Meteor., 15, 805–810.

    Article  Google Scholar 

  • Singh, S.S. and Saha, K.R. (1978). Indian J. Met. Hydrol. Geophys., 29.

    Google Scholar 

  • Smith, R.K., Ulrich, W. and Dietechmayer, G.D. (1990). A numerical study of tropical cyclone motion using a barotropic model. Part I: The role of vortex asymmetries. Quat. J. Roy. Meteor. Soc., 116, 337–362.

    Article  Google Scholar 

  • Stinikov, I.G. (1991). Numerical modelling of tropical cyclones in the USSR. Hydrometeor. Res. Centre, Moscow, USSR.

    Google Scholar 

  • Suryanarayana, R. and Sikka, D.R. (1966). Forecasting Officers’ Conference, India Met. Deptt.

    Google Scholar 

  • Ueno, M. (1989). Operational bogussing and numerical prediction of typhoon in JMA. JMA/NPD Tech. Rep., 28, Japan Met. Agency, Tokyo, 48 pp.

    Google Scholar 

  • Ueno, M. and Ohnogi, K. (1992). A change of the operational typhoon bogussing method. Tech. Doc. WMO/TD No. 472, World Meteor. Organ., Geneva, pp. II.21–II.27.

    Google Scholar 

  • Velden, C.S. and Leslie, L.M. (1991). The basic relationship between tropical cyclone intensity and the depth of environmental steering layer in the Australian region. Wea. and Forecasting, 6, 244–253.

    Article  Google Scholar 

  • Velden, C.S. (1993). The relationship between tropical cyclone motion, intensity and vertical extent of the environmental steering layer in the Atlantic basin. Preprints, 20th Conf. Hurr. Trop. Meteor., Amer. Meteor. Soc., Boston, MA 02108, 31–34.

    Google Scholar 

  • Wang, Y. and Holland, G.J. (1993). On some baroclinic aspects of tropical cyclone motion. Tropical Cyclone Disasters (eds. J. Lighthill, K. Emanuel, G.J. Holland and Z. Zhang), 280–285.

    Google Scholar 

  • WMO (1987). Typhoon Committee Operational Manual, Meteorological Components. WMO/TD No. 196, TCP-23, WMO, Geneva, New Edition, 1993.

    Google Scholar 

  • Wu, Z. and Xu, S. (1980). Collection of papers at the International symposium on typhoon, Shanghai, 1980.

    Google Scholar 

  • Zhu, Y.T. (1993). Recent advances in numerical simulation of tropical cyclone activities in China. Tropical Cyclone Disasters (Eds. J. Lighthill, K. Emanuel. G.J. Holland and Z. Zhang), Peking University Press, 207–219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Capital Publishing Company

About this chapter

Cite this chapter

Mohanty, U., Gupta, A. (2008). Deterministic Methods for Prediction of Tropical Cyclone Tracks. In: Modelling and Monitoring of Coastal Marine Processes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8327-3_10

Download citation

Publish with us

Policies and ethics