Newton’s scientific and philosophical legacy laid the foundation of a tradition in natural philosophy that became the most accepted way of exploring the universe in the eighteenth and nineteenth centuries. This wide acceptance of Newtonianism, however, did not mean that all parts of Newton’s philosophy were clearly comprehended, rather there were enough ambiguities and inconsistencies in his works to cause the emergence of different schools or traditions of Newtonian philosophy.

During Newton’s lifetime and after his death, many publications in physics, astronomy, and philosophy appeared with subtitles such as “demonstrated upon the mathematical principles of Sir Isaac Newton,” or “deduced from Sir Isaac Newton’s philosophy,” in which the authors attempted to interpret natural phenomena according to their understandings of Newton’s works. Based on various approaches to interpret the “Newtonian Philosophy,” as I. B. Cohen classified them, five different meanings of Newtonianism appeared among the followers of Newton.


Cometary Tail Tail Formation Cometary Orbit Cometary Atmosphere Cometary Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 299.
    I. Bernard Cohen, Franklin and Newton, An Inquiry into Speculative Newtonian Experimental Science and Franklin’s Work in Electricity as an Example Thereof (Philadelphia: The American Philosophical Society, 1956), pp. 179–181.Google Scholar
  2. 300.
    In the late eighteenth century, calculation of the gravitational effects of comets on planets revealed the minimal role of comets in developing planetary perturbations, which meant a typical comet’s mass was very much smaller than had been previously assumed. Therefore, studying the orbital properties of comets opened a new window to see their physical characteristics. See Chapter 6.Google Scholar
  3. 301.
    Cantor and Hodge, “Introduction”, p. 19; Betty Jo Teeter Dobbs, The Janus Faces of Genius, The Role of Alchemy in Newton’s Thought (Cambridge: Cambridge University Press, 1991), pp. 185–187.Google Scholar
  4. 302.
    P. M. Heimann, “Ether and imponderables”, in Conceptions of ether, Studies in the history of ether theories, 1740–1900 (Cambridge: Cambridge University Press, 1981), p. 66.Google Scholar
  5. 303.
    Herman Boerhaave (1668–1738), a Dutch physician and chemist, developed a theory of fire in which the particles of fire were assumed to be active elements, the cause of chemical changes, space-pervading, penetrating all solid and fluid bodies and not subject to the laws of gravity. This theory was compatible with Stahl’s phlogiston theory and had major influence on succeeding theories of heat and electricity. Boerhaave’s Elementa chemiae (1732) was translated into English by Dallowe in 1735 and Peter Shaw (with explanatory footnotes) in 1741. See Ibid., p. 69.Google Scholar
  6. 304.
    Bryan Robinson of Dublin published his studies on ether in a systematic way from 1732 and investigating Newton’s writings about the ether, showed the inconsistencies of his theory of ether. See: Cohen, Franklin and Newton, pp. 418–423; Rupert Hall shows Robinson’s erroneous understanding of some aspects of Newton’s ether. See: A. Rupert Hall, Marie Boas Hall, “Newton’s Theory of Matter”, Isis 51(1960), 135.Google Scholar
  7. 305.
    Chapman, “The accuracy of angular measuring instruments”, p. 135. John Smeaton (1724–1792) and Jesse Ramsden (1731–1800) were two leading designers of micrometers in the second half of the eighteenth century. In Smeaton’s micrometer, the screws could move the pointing wires by an accuracy of about 1/2, 300 inch. See: Randall C. Brooks, “The Development of Micrometers in the Seventeenth, Eighteenth and Nineteenth Centuries”, Journal of History of Astronomy 22(1991), 149.Google Scholar
  8. 306.
    Willem Jacob van ‘sGravesande (1688–1742), professor of mathematics and astronomy at Leiden, was one of the first Newtonians who developed a new educational trend in teaching Newton’s physics based on experimental courses and illustrating the applications of physical laws in technology and everyday life. His text book in physics entitled Mathematical Elements of Natural Philosophy Confirmed by Experiments, or An Introduction to Sir Isaac Newton’s Philosophy was translated from its original Latin into English by Jean Theophile Desaguliers (1683–1744) and published in six editions by mid-century. Desaguliers also was one the leading figures in publicizing Newton’s physics by performing public lectures and demonstrating experiments. Desaguliers’ A Course of Experimental Philosophy (1734) and A Course of Mechanical and Experimental Philosophy, whereby anyone, although unskill’d in Mathematical Sciences, may be able to understand all those Phænomena of Nature, which have been discovered by Geometrical principles (1725) were popular works on Newton’s physics which were published in several editions. Neither Gravesande nor Desaguliers proposed a new theory of comets, nor did they popularize a modified version of Newton’s theory of comets. Their account of comets is a brief summary of Newton’s theory of comets. See: T. J. Desaguliers, A Course of Experimental Philosophy (London, 1734), pp. 409–417; William Jacob van ‘sGravesande, An Explanation of the Newtonian Philosophy (London, 1735), p. 391; idem, Mathematical Elements of Natural Philosophy, 2 vols. (London, 1474), vol. 2, pp. 284, 346.Google Scholar
  9. 307.
    For Whiston’s theory of the earth and his ideas on the universal deluge see: William Whiston, A New Theory of Earth, from its Original, to the Consummation of all Things. Wherein the Creation of the World in Six Days, The Universal deluge, And the General Conflagration, As laid down in the Holy Scriptures, Are Shewn to be perfectly agreeable to Reason and Philosophy. with a large Introductory Discourse concerning the Genuine Nature, Stile, and Extent of the Mosaick History of the Creation (London, 1669), pp. 231–370; Whiston prepared a summary of his theory and published it as an appendix to the sixth edition of A New Theory of Earth (London, 1755), pp. 459–478; Kerry V. Magruder, “Theories of the Earth from Descartes to Cuvier: Natural Order and Historical Contingency in a Contested Textual Tradition” (Ph.D. diss., University of Oklahoma, Norman, 2000), pp. 578–590; Schechner, Comets, Popular Culture, pp. 189–195; James E. Force, William Whiston: Honest Newtonian (Cambridge: Cambridge University Press), pp. 32–61.Google Scholar
  10. 308.
    Based on Whiston’s writings, Magruder summarized the effects of past cometary impacts in four categories. The following is a rewriting of a where he presented those effects: (1) Creation: Earth’s watery chaos, from which proceeded the events of the creation week, derived from a comet (no impact; it moved into a regular annual motion; 1 day = 1 year; Edenic conditions of perpetual equinox); (2) Fall: Shock of impact produced daily motion; days shortened to twenty-four hours; Rotational axis inclined to the Sun; Eden replaced by tropical zones as seasons belong; Earth became an oblate spheroid from stress of rotation; created fissures in outer crust; (3) Deluge: The watery head of an approaching comet provided the “windows of heaven”, sources of deluge waters; Gravitational tidal forces shattered already cracked crust of Earth, releasing the “fountains of the deep;” Orbit of Earth altered from circular form to an ellipse, increasing the length of a year by ten days; and (4) Conflagration: A fiery comet receding from the Sun will engulf the Earth. See Magruder, “Theories of the Earth”, p. 587.Google Scholar
  11. 309.
    Whiston, A New Theory of the Earth, 6 ed., pp. 50–51.Google Scholar
  12. 310.
    Ibid., p. 52.Google Scholar
  13. 311.
    Whiston makes a minor mistake in calculating the cooling time of a comet as big as the earth and composed of iron. According to Newton, if such a globe were heated as hot as red hot iron, it would take 50, 000 years for it to cool off. However, since the comet absorbed 2, 000 times more heat than red hot iron, the cooling time would be about 100, 000, 000 years. Whiston takes the cooling time of the comet to be only 50, 000 years. See Ibid., 53.Google Scholar
  14. 312.
    Newton, Principia, pp. 926–927.Google Scholar
  15. 313.
    Whiston, A New Theory of the Earth, 6th ed., pp. 54.Google Scholar
  16. 314.
    Ibid. Obviously, if the earth would pass through the tail of a comet before its perihelion, the pure vapor of the tail would cause heavy watery rains.Google Scholar
  17. 315.
    Ibid., pp. 55–56. Although Whiston’s reasoning is interesting, it has to be noted that the shape of a rotating coma would be determined by its angular speed. Therefore, it is possible that a comet might rotate with a low speed (like the moon which its axial rotation and orbital revolution take place in the same interval of time) and sustain a symmetrical shape.Google Scholar
  18. 316.
    A number of late medieval scholars, among them William of Ockham, Walter Burley, John of Bassols, St. Bonaventure and Francis Mayron, rejecting Aristotle’s doctrine, stated that God could create more than one world. This idea later–specially after the introduction of the heliocentric systems–was developed as a theory which admitted the possibility of inhabited planets existing in the solar system as well as other systems. One of the first treatises about this topic was written by Pierre Borel (1620?–1671) entitled A New Treatise Proving a Multiplicity of Worlds … (London: 1658). Bernard Le Bovier Fontenelle (1657–1757) also wrote a similar book with the title of Entretiens sur la pluralité des mondes (Paris, 1688; its English translation published in London in 1700), and Christian Huygens tried to prove that there were ‘animate creatures’ in the planets. The issue, from the late seventeenth century, became one of the most interesting chapters of several astronomical books, encyclopedias, as well as some philosophical texts. See: Pierre Duhem, Medieval Cosmology: Theories of Infinity, Place, Time, Void, and the Plurality of worlds, Roger Ariew (eds. & trans.) (Chicago: Chicago University Press, 1985); Grant McColley, H. W. Miller, “Saint Bonaventure, Francis Mayron, William Vorilong and the Doctrine of a Plurality of Worlds”, Speculum 12 (1937), 386–389, Frank J. Tipler, “A Brief History of the Extraterrestrial Intelligence Concept”, Quarterly Journal of Royal Astronomical Society 22 (1982), 133–145; Steven J. Dick, Plurality of Worlds: The Origin of the extra terrestrial life from Democritus to Kant (Cambridge: Cambridge University Press: 1982); Michael J. Crowe, The Extraterrestrial Life Debate, 1750–1900: The Idea of a Plurality of Worlds from Kant to Lowell (Cambridge: Cambridge University Press, 1986), pp. 3–41, 41–81.Google Scholar
  19. 317.
    Whiston, A New Theory of the Earth, 6th ed., pp. 51.Google Scholar
  20. 318.
    For Halley’s works on cometary orbits see: David W. Hughes, “Edmund Halley: His Interest in Comets”, in Norman J. W. Thrower (ed.), Standing on the Shoulders of Giants, pp. 324–372; Idem, “Edmund Halley: Why was he interested in comets?” Journal of the British Interplanetary Society 37 (1984), 32–44; D. W. Hughes and A. Drummond, “Edmund Halley’s Observations of Halley’s Comet”, Journal for the History of Astronomy 15 (1984), 189–107; Donald K. Yeomans et al., “The History of Comet Halley”, Journal of the Royal Astronomical Society of Canada 80 (1986), 62–86.Google Scholar
  21. 319.
    Orbital elements are parameters that specify the position and motion of a celestial body in its orbit: the eccentricity, e, specifies the shape and size of an elliptical orbit; the orientation of the orbit in the space is determined by the inclination of the orbital plane, i (usually regarding to the plane of the ecliptic) and the longitude of the ascending node, Ω (the angular distance from the vernal equinox, γ, to the ascending node, N. The orientation of the orbit in its orbital plane is identified by the angular distance, ω, between the periapsis, P, and the ascending node, Ω. See: Valerie Illingworth, Macmillan Dictionary of Astronomy (London: 1985), p. 263 (diagram is adopted from the same).Google Scholar
  22. 320.
    For Halley’s cosmological ideas see: Simon Schaffer, “Halley’s Atheism and the End of the World”, Notes and Records of the Royal Society of London 32 (1977), 17–40; Schechner Genuth, Comets, Popular Culture, pp. 156–177; idem, “Newton and the Ongoing Teleological Role of the Comets”, in Norman J. W. Thrower (ed.), Standing on the Shoulders of Giants, pp. 299–311; David Kubrin, “Such an Impertinently Litigious Lady”: Hooke’s “Great Pretending” vs. Newton’s Principia and Newton’s and Halley’s Theory of Comets”, Ibid, pp. 55–90.Google Scholar
  23. 321.
    Edmund Halley, “An Account of Some Observations Lately Made at Nurenburg by Mr. P. Wurtzelbaur, Shewing That the Latitude of That Place Has Continued without Sensible Alteration for 200 Years Last Past; as Likewise the Obliquity of the Ecliptick; By Comparing Them with what Was Observed by Bernard Walther in the Year 1487, being a Discourse Read before the Royal Society in One of Our Late Meetings”, Philosophical Transactions, 16 (1686–1692), 403–406, esp. p. 406.Google Scholar
  24. 322.
    One of the reasons that Halley deduced a hollow earth was Newton’s calculation of a higher density for the moon. See: N. Kollerstrom, “The Hollow World of Edmund Halley”, Journal for the History of Astronomy 23 (1992), 185–192; Conway Zirkle, “The Theory of Concentric Spheres: Edmund Halley, Cotton Mather, & John Cleves Symmes”, Isis 37 (1947), 155–159; For Halley’s magnetic theory of the earth see: Edmund Halley, “An Account of the cause of the Change of the Variation of the Magnetical Needle; with an Hypothesis of the Structure of the Internal parts of the Earth: as it was proposed to the Royal Society in one of their late meetings”, Philosophical Transactions of the Royal Society of London 16 (1691), 563–578; Magruder, “Theories of the Earth”, pp. 626–635.Google Scholar
  25. 323.
    For Halley’s priority see: Kubrin, “Such an Impertinently Litigious Lady”, pp. 71–73.Google Scholar
  26. 324.
    Gregory, Elements, vol. 2, pp. 693–694.Google Scholar
  27. 325.
    Ibid., p. 714. Benjamin Martin (1704?–1782), a well-known popularizer of science and scientific instrument maker, supports the idea of light pressure in his treatise on comets. He refers to several experiments to measure the impulsive force of the sun’s rays. In these experiments light bodies were suspended by a fine thread in a place close to the focal point of very large burning glasses, four or five feet in diameter. He observed that those light bodies move back and forth like a pendulum. Although this was not a real measurement of the light pressure (the movement of the light bodies was due to the convection of heated air), scientists believed that the sun’s rays could exert stronger pressure on particles in the highly rarified medium of the celestial region, “where the Matter of a Comet’s Tail is very fine and liable to be put in Motion with the least Degree of Force, much more by the prodigious Impetus of a Particle of Light moving with a Velocity not to be expres’d or conceiv’d”. See: Benjamin Martin, The Theory of Comets (London: Printed for the Author, 1757), pp. 10–11.Google Scholar
  28. 326.
    Gregory, following Newton’s calculations in proposition 41 of book 3 of the Principia, demonstrates that how a small amount of air can expand in a vast space. He compares the comets tail to “a prodigious Heap of Smoke a small Piece of Wood or Pit-coal is converted;” Ibid., pp. 705–707, 715.Google Scholar
  29. 327.
    Ibid., p. 716.Google Scholar
  30. 328.
    Walter G. Hiscock, ed. David Gregory, Isaac Newton and Their Circle: Extracts from David Gregory’s Memoranda 1677–1708 (Oxford: by editor, 1937), p. 26.Google Scholar
  31. 329.
    Newton, Principia, p. 938. The same concept is repeated as follows: “and then [the vapor] is by degrees attracted toward the planets by its gravity and mixed with their atmospheres. For just as the seas are absolutely necessary for the constitution of this earth, so that vapors may be abundantly enough aroused from them by the heat of the sun, which vapors either–being gathered into clouds–fall in rains and irrigate and nourish the whole earth for the propagation of veges, or–being condensed in the cold peaks of mountains (as some philosophize with good reason)–run down into springs and rivers; so for the conservation of the seas and fluids on the planets, comets seem to be required, so that from the condensation of their exhalations and vapors, there can be a continual supply and renewal of whatever liquid is consumed by vegetation and putrefaction and converted into dry earth”. Ibid., p. 926.Google Scholar
  32. 330.
    Gregory, Elements, pp. 715–719.Google Scholar
  33. 331.
    Ibid., p. 804.Google Scholar
  34. 332.
    Ibid., 851–852.Google Scholar
  35. 333.
    Ibid., 852.Google Scholar
  36. 334.
    Ibid., pp. 852–854.Google Scholar
  37. 335.
    The two others were Colin Maclaurin and François Marie Arouet Voltaire, both considered below. See: I. Bernard Cohen’s introduction to the reprint edition of: Henry Pemberton, A view of Sir Isaac Newton’s Philosophy (London, 1728), reprinted by Johnson Reprint Corporation (New York, 1972), p. v.Google Scholar
  38. 336.
    See: A. Rupert Hall, “Newton and His Editors”, Proceedings of Royal Society 338 (1974), 397–417; Westfall, Never at Rest, pp. 798–801.Google Scholar
  39. 337.
    Pemberton, A view of Newton’s Philosophy, p. 230.Google Scholar
  40. 338.
    Ibid., pp. 237–238.Google Scholar
  41. 339.
    Ibid., 245.Google Scholar
  42. 340.
    Ibid., 245.Google Scholar
  43. 341.
    Ibid., 246.Google Scholar
  44. 342.
    Newton’s philosophy was not popular in France in the first half of the eighteenth century. See: Alexander Koyré, Newtonian Studies (Cambridge: Harvard University Press, 1965), p. 54.Google Scholar
  45. 343.
    John Stephenson Spike, French Free thought from Gassendi to Voltaire (London: University of London Press, 1960), pp. 312–324.Google Scholar
  46. 344.
    Voltaire, The Elements of Sir Isaac Newton’s Philosophy, revised and corrected by John Hanna (London, 1738), pp. 331–332.Google Scholar
  47. 345.
    Ibid., p. 335. As we saw above, using exactly the same reason, Whiston, proved that comets were not rotating.Google Scholar
  48. 346.
  49. 347.
    Ibid., p. 336. Voltaire uses the French term fumée to denote the material of a tail: “La fumée qui sort des Cometes, & qui se disperse dans les Regions du Ciel qu’elles traversent, composent leurs queues […]”. For the French version see: Voltaire, Élemens de la philosophie de Neuton (Paris: 1738), p. 295.Google Scholar
  50. 348.
    Voltaire, Elements of Newton’s Philosophy, p. 337.Google Scholar
  51. 349.
    Ibid., p. 338. By admitting cometary tails as smoke an observational problem emerges which Voltaire leaves unanswered. Observations confirmed that even very dim stars were observable through the tails. Obviously, the rising smoke from conflagrations on comets should reduce stellar brightness, which had not been reported.Google Scholar
  52. 350.
    Newton only on one occasion addresses the formation of smoke in the atmosphere of comets: “Moreover, these atmospheres appear smallest when the heads, after having been heated by the sun, have gone off into the largest and brightest tails, and the nuclei are surrounded in the lowest parts of their atmospheres by smoke possibly coarser and blacker”. See: Newton, Principia, pp. 926–927. Newton’s idea is clear and does not imply that the tail is a train of smoke formed by burning material of a comet’s atmosphere.Google Scholar
  53. 351.
    Voltaire, Elements of Newton’s Philosophy, pp. 334–336. Voltaire correctly points out that the comet of 1680 (assumed to be as large as the earth and composed of a substance as dense as iron) needed 108 million years to cool off after passing the perihelion. Newton’s result of 50, 000 years is only valid for a globe of iron as large as the earth with a temperature of red hot iron. Since, according to Newton, the body of the comet was heated 2, 000 times more than red hot iron, the time of its cooling would be prolonged by a factor of 2000. Depending on the adopted value for the temperature of red hot iron and the radius of the earth the final result may vary slightly.Google Scholar
  54. 352.
    Roger Long, Astronomy in Five Books (Cambridge: Printed for the Author, 1742), p. x.Google Scholar
  55. 353.
    Ibid., book 3, p. 557.Google Scholar
  56. 354.
  57. 355.
    It seems that Newton assumed temperature to be a quantity whose magnitude is additive or extensive (like mass or volume), while the magnitude of temperature is independent of the extent of the system, and is an intensive quantity.Google Scholar
  58. 356.
    For a comprehensive account of Maclaurin’s exposition of Newton’s Principia see the introduction of L. L. Laudan to a facsimile print of the first edition (1748) of Colin Maclaurin, An Account of Sir Isaac Newton’s Philosophical Discoveries (New York: Johnson Print Corporation, 1968), pp. ix–xxv.Google Scholar
  59. 357.
    Colin Maclaurin, An Account of Sir Isaac Newton’s Philosophical Discoveries (London: Printed for the Author’s Children, 1748), p. 369.Google Scholar
  60. 358.
  61. 359.
    Ibid., 372.Google Scholar
  62. 360.
    Ibid., p. 375–376.Google Scholar
  63. 361.
    Ibid., p. 377.Google Scholar
  64. 362.
    Ibid., p. 390.Google Scholar
  65. 363.
    For the reception of Newton in the Continent see: Henry Guerlac, Newton on the Continent (Ithaca: Cornell University Press, 1981), esp. chapter 3, pp. 41–77; Patricia Fara, Newton, the Making of Genius (New York: Columbia University Press, 2002), esp. chapter 5, pp. 126–154; A. Rupert Hall, “Newton in France: A New View”, History of Science 13 (1975), 233–250; Paolo Casini, “Newton in Prussia”, Rivista di filosofia 91 (2000), 251–282; Judith P. Zinsser, “Translating Newton’s Principia: The Marquise du Châtelet’s revisions and additions for a French audience”, Notes and Records of the Royal Society of London 55 (2001), 227–245.Google Scholar
  66. 364.
    For a review of these debates see: Kubrin, “Newton and the Cyclic Cosmos”.Google Scholar
  67. 365.
    Curtis Wilson, “The Newtonian achievement in astronomy”, in R. Taton and C. Wilson, eds. The General History of Astronomy, vol. 2A, pp. 233–274.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Personalised recommendations