Skip to main content

Radioactive Particles Released from Different Nuclear Sources: With Focus on Nuclear Weapons Tests

  • Conference paper
Nuclear Risks in Central Asia

Radionuclides released from a source may be present in different physicochemical forms, varying from low molecular mass (LMM) species, colloids and pseudocolloids, to particles and fragments. Following releases from severe nuclear events such as nuclear weapon tests, weapon grade materials such as U and Pu are predominantly transported and deposited as radioactive particles or fragments. These entities can carry substantial amounts of refractory fission products, activation products and transuranics. Similarly, radioactive particles are also released following conventional explosions of nuclear weapons or depleted uranium ammunitions, or following nuclear reactor accidents involving explosions or fires. Finally, radioactive particles and colloids are present in effluents from reprocessing facilities and civil reactors entering the environment, and radioactive particles are observed in sediments in the close vicinity of radioactive waste dumped at sea. Thus, releases of radioactive particles containing refractory radionuclides should also be expected following severe nuclear events in the future.

To perform long-term impact assessments for organisms in radioactive contaminated areas by contamination, information on the source term, i.e. activity concentrations, isotopic ratios as well as the radionuclide speciation is essential. If areas are contaminated with radioactive particles, particle characteristics such as the particle size distribution, crystallographic structures and oxidation states are important for assessing particle weathering rates and the subsequent mobilisation and biological uptake of associated radionuclides. Thus, advanced solid-state speciation techniques such as electron microscopy combined with synchrotron radiation X-ray microscopic techniques are needed in radioecology. Many years of research on radioactive particles from different sources has demonstrated that the activity concentrations and the isotopic ratios are source dependant, while particle characteristics such as particle size distribution, crystallographic structures and oxidation states for matrix elements also reflect the release scenario, dispersion processes and deposition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salbu, B. (2000) Speciation of Radionuclides. Encyclopaedia Analytical Chemistry. Wiley, Chichester, 12993-13016.

    Google Scholar 

  2. IAEA CRP. (2001) Co-ordinated Research Programme on radioactive particle. Report by an International Advisory Committee, IAEA, Vienna.

    Google Scholar 

  3. Cooper, M., Burns, P., Tracy, B., Wilks, M., and Williams, G. (1994) Characterisation of plutonium contamination at the former nuclear weapons testing range at Maralinga in South Australia. J. Radioanal. Nucl. Chem. 177, 161-184.

    Article  CAS  Google Scholar 

  4. Danesi, P.R., De Regge, P., La Rosa, J., Makarewicz, M., Moreno, J., Radecki, Z., and Zeiller, E. (1998) Residual plutonium isotopes and americium in the terrestrial environment at the former nuclear test sites of Mururoa and Fangataufa, Proc. the 7th Intern. Conf, “Low level measurements of actinides and long lived radionuclides in biological and environmental samples”, Salt Lake City, UT.

    Google Scholar 

  5. Crocker, G.R., O’Connor, J.D., and Freiling, E.C. (1966) Physical and radiochemical properties of fallout particles. Health Phys. 12, 1099-1104.

    CAS  Google Scholar 

  6. Anspaugh, L.R. and Church, B.W. (1986) Historical estimates of external γ exposure and collective external γ exposure from testing at the Nevada Test Site. 1. Test series through Hardtack II, 1958. Health Phys. 51, 35-51.

    Article  CAS  Google Scholar 

  7. Kuriny, V.D., Ivanov, Y.A., Kashparov, V.A., Loschilov, N.A., Protsak, V.P., Yudin, E.B., Zhurba, M.A., and Parshakov, A.E. (1993) Particle associated Chernobyl fall-out in the local and intermediate zones. Ann. Nucl. Energy 20, 415-420.

    Article  CAS  Google Scholar 

  8. Chamberlain, A.C. and Dunster, H.J. (1958) Deposition of radioactivity in north-west England from the accident at Windscale. Nature 182, 629-630.

    Article  CAS  Google Scholar 

  9. Salbu, B., Krekling, T., Oughton, D.H., Østby, G., Kashparov, V.A., Brand, T.L., and Day, J.P. (1994) Hot particles in accidental releases from Chernobyl and Windscale Nuclear installations. Analyst 119, 125-130.

    Article  CAS  Google Scholar 

  10. Hamilton, T.F. (2004) Linking legacies of the Cold war to arrival of anthropogenic radionuclides in the ocean through the 20th century, in H.D. Livingston (ed) Marine Radioactivity. Elsevier, 23-78.

    Google Scholar 

  11. Jakeman, D. (1986) Notes of the level of radioactive contamination in the Sellafield area arising from discharges in the Early 1950s. UKAEA, AEEW Report 2104, Atomic Energy Establishment, Winfrith, Dorset.

    Google Scholar 

  12. Salbu, B., Bjørnstad, H.E., Sværen, I., Prosser, S.L., Bulman, R.A., Harvey, B.R., and Lovett, M.B. (1993) Size distribution of radionuclides in nuclear fuel reprocessing liquids after mixing with seawater. Sci. Tot. Environ. 130/131, 51-63.

    Article  Google Scholar 

  13. Chamberlain, A.C. (1987) Environmental impact of particles emitted from Windscale Piles, 1954-57. Sci. Tot. Environ. 63, 139-160.

    Article  CAS  Google Scholar 

  14. Kjerre, L. (2006) Characterization of Radioactive Particles from Krasnoyarsk-26, Russia. Thesis. Norwegian University of Life Sciences, Aas, Norway.

    Google Scholar 

  15. Salbu, B., Nikitin, A.I., Strand, P., Christensen, G.C., Chumichev, V.B., Lind, B., Fjelldal, H., Bergan, T.D.S., Rudjord, A.L., Sickel, M., Valetova, N.K., and Føyn, L. (1997) Radioactive contamination from dumped nuclear waste in the Kara Sea - results from the Joint Russian-Norwegian expeditions in 1992-94. Sci. Tot. Environ. 202, 185-198.

    Article  CAS  Google Scholar 

  16. Bunzl, K. (1997) Probability of detecting hot particles in environmental samples by sample splitting. Analyst 122, 653-656.

    Article  CAS  Google Scholar 

  17. Oughton, D.H., Salbu, B., Brand, T.L., Day, J.P., and Aarkrog, A. (1993) Under-determination of strontium-90 in soils containing particles of irradiated uranium oxide fuel. Analyst 118, 1101-1105.

    Article  CAS  Google Scholar 

  18. Salbu, B., Krekling, T., and Oughton, D.H. (1998) Characterisation of radioactive particles in the environment. Analyst 123, 843-849.

    Article  CAS  Google Scholar 

  19. Salbu, B., Krekling, T., Lind, O.C., Oughton, D.H., Drakopoulos, M., Simionovici, A., Snigireva, I., Snigirev, A., Weitkamp, T., Adams, F., Janssens, K., and Kashparov, V.A. (2001) High energy X-ray microscopy for characterisation of fuel particles. Nucl. Instr. and Meth. A 467, 21, 1249-1252.

    Article  Google Scholar 

  20. UNSCEAR. (2000) Sources and effects of ionizing radiation. The United Nations Scientific Committee on the Effects of Atomic Radiation. New York.

    Google Scholar 

  21. Kashparov, V.A., Ivanov, Y.A., Zvarich, S.I., Protsak, V.P., Khomutinin, Y.V., Kurepin, A.D., and Pazukhin, E.M. (1996) Formation of hot particles during the Chernobyl nuclear power plant accident. Nucl. Tech. 114, 246-253.

    CAS  Google Scholar 

  22. Kashparov, V.A., Oughton, D.H., Protsak, V.P., Zvarisch, S.I., Protsak, V.P., and Levchuk, S.E. (1999) Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30 km exclusion zone. Hlth Phys. 76, 251-259.

    CAS  Google Scholar 

  23. Devell, L., Tovedal, M., Bergstrøm, U., Applegren, A., Chussler, J., and Andersson, L. (1986) Initial observations of fallout from the reactor accident at Chernobyl. Nature 321, 817- 819.

    Article  Google Scholar 

  24. AMAP-Arctic Monitoring and Assessment Programme. (2002) Arctic pollution issues: radioactive contamination. Report from Norwegian Radiation Protection Authority. Oesteraas, Norway.

    Google Scholar 

  25. Espinosa, A., Aragón, A., Hogdson, A., Stradling, N., and Birchall, A. (1998) Assessment of doses to members of the public in Palomares from inhalation of plutonium and americium. Radiat. Prot. Dosim. 79, 1-4.

    Google Scholar 

  26. Lind, O.C., Salbu, B., Proost, K., Janssens, K., and Falkenberg, G. (2003) Oxidation state determinations of U and Pu in particles from Thule and Palomares. In: HASYLAB Annual Report 2002. Hamburg.

    Google Scholar 

  27. Eriksson, Mats. (2002) On Weapons Plutonium in the Arctic environment (Thule, Greenland). Ph.D. thesis, Risø National Laboratory, 3-5-0002, 1-146.

    Google Scholar 

  28. Lind, O.C., Salbu, B., Janssens, K., Proost, K., and Dahlgaard, H. (2005) Characterization of uranium and plutonium containing particles originating from the nuclear weapons accident in Thule, Greenland, 1968. J. Env. Radioact. 81, 21-32.

    Article  CAS  Google Scholar 

  29. Jernstrøm, J., Eriksson, M., Osan, J., Tørøk, S., Simon, R., Falkenberg, G., Alsecz, A, and Betti, M. (2004) Non-destructive characterisation of radioactive particles from Irish sea sediment by micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge spectroscopy (μ-XANES). J. Anal. At. Spectrom. 19, 1428-1433.

    Article  CAS  Google Scholar 

  30. JNREG-Joint Norwegian-Russian Expert Group for Investigation of Radioactive Contamination in the Northern Areas. (1997) Sources contributing to radioactive contamination of the Techa River and areas surrounding the “Mayak” production association, Urals, Russia. Report by Norwegian Radiation Protection Authorities, Østerås, Norway, ISBN 82-993979-6-1, 134.

    Google Scholar 

  31. Danesi, P.R., Markowicz, A., Chinea-Cano, E., Burkart, W., Salbu, B., Donohue, D., Ruedenauer, F., Hedberg, M., Vogt, S., Zaharadnik, P., Ciurapinski, A.J. (2003) Depleted uranium particles in selected Kosovo samples. Env. Radioact. 64, 143-154.

    Article  CAS  Google Scholar 

  32. Salbu, B., Janssens, K., Lind, O.C., Proost, K., and Danesi, P.R. (2003) Oxidation states of uranium in DU particles from Kosovo. J. Env. Radioact. 64, 163-167.

    Article  Google Scholar 

  33. Salbu, B., Janssens, K., Lind, O.C., Proost, K., Gijsels, L., and Danesi, P.R. (2004) Oxidation states of uranium in depleted uranium particles from Kuwait. J. Env. Radioact. 78, 125-135.

    Article  CAS  Google Scholar 

  34. Simon, S., Jenner, T., Graham, J., and Borcher, A. (1995) A comparison of macro- and microscopic measurements of plutonium in contaminated soil from the Republic of the Marshall Islands. J. Radio anal. Nucl. Chem. 194, 197-205.

    Article  CAS  Google Scholar 

  35. IAEA. (1998) The radiological situation at the atolls of Mururoa and Fangataufa. Report by an International Advisory Committee, IAEA, Vienna.

    Google Scholar 

  36. Smith, J.N., Ellis, K.M., Naes, K., Dahle, S., and Matisov, D. (1995) Sedimentation and mixing rates of radionuclides in Barents Sea sediments off Novaya Zemlya. Deep Sea Res. II 42, 1471-1493.

    Article  CAS  Google Scholar 

  37. IAEA. (1998) Radiological conditions at the Semipalatinsk test site, Kazakhstan: preliminary assessment and recommendations for further research. International Atomic Energy Agency, Radiological Assessment Report, Vienna.

    Google Scholar 

  38. Yamamoto, M., Tsumara, A., Katayama, Y., and Tsukatani, T. (1996) Plutonium isotopic composition in soil from the former Semipalatinsk nuclear test site. Radiochimica Acta 72, 209-215.

    CAS  Google Scholar 

  39. Dubasov, U.V., Krivohatskii, A.S., Kharitonov, K.V., and Ghorin, V.V. (1994) Radioactive contamination of the Semipalatinsk province ground and adjacent territories of the region after atmospheric nuclear tests in 1949-1962. Remediation and restoration of radioactively-contaminated sites in Europe. Proceedings of the Int. Symp., Antwerp 1993. Doc. XI-5027/94. European Commission, Brussels, 25.

    Google Scholar 

  40. EU Advance. (2004) Source-specific ecosystem transfer of actinides utilising advanced technologies, Final Report, Contract FIGE-2000-00108, Dublin.

    Google Scholar 

  41. Salbu, B. and Lind, O.C. (2005) Radioactive particles released from various nuclear sources. Radioprotection 40, Suppl. 1, 27-32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Salbu, B. (2008). Radioactive Particles Released from Different Nuclear Sources: With Focus on Nuclear Weapons Tests. In: Salbu, B., Skipperud, L. (eds) Nuclear Risks in Central Asia. NATO Science for Peace and Security Series Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8317-4_2

Download citation

Publish with us

Policies and ethics