Skip to main content

Rogue Waves in Higher Order Nonlinear Schrödinger Models

  • Chapter

Abstract

We discuss physical and statistical properties of rogue wave generation in deep water from the perspective of the focusing Nonlinear Schrödinger equation and some of its higher order generalizations. Numerical investigations and analytical arguments based on the inverse spectral theory of the underlying integrable model, perturbation analysis, and statistical methods provide a coherent picture of rogue waves associated with nonlinear focusing events. Homoclinic orbits of unstable solutions of the underlying integrable model are certainly candidates for extreme waves, however, for more realistic models such as the modified Dysthe equation two novel features emerge: (a) a chaotic sea state appears to be an important mechanism for both generation and increased likelihood of rogue waves; (b) the extreme waves intermittently emerging from the chaotic background can be correlated with the homoclinic orbits characterized by maximal coalescence of their spatial modes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz MJ, Hammack J, Henderson D, Schober CM (2000) Modulated periodic stokes waves in deep water. Phys Rev Lett 84:887–890

    Article  Google Scholar 

  2. Ablowitz MJ, Hammack J, Henderson D, Schober CM (2001) Long time dynamics of the modulational instability of deep water waves. Physica D 152–153:416–433

    Article  Google Scholar 

  3. Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Philadelphia

    Google Scholar 

  4. Akhmediev NN, Korneev VI, Mitskevich NV (1988) N-modulation signals in a single-mode optical waveguide under nonlinear conditions. Sov Phys JETP 67:1

    Google Scholar 

  5. Bridges TJ, Derks G (1999) Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry. Proc R Soc Lond A 455:2427

    Article  Google Scholar 

  6. Cai D, McLaughlin DW, McLaughlin KTR (1995) The nonlinear Schrödinger equation as both a PDE and a dynamical system. Preprint.

    Google Scholar 

  7. Calini A, Schober CM (2002) Homoclinic chaos increases the likelihood of rogue waves. Phys Lett A 298:335–349

    Article  Google Scholar 

  8. Calini A, Ercolani NM, McLaughlin DW, Schober CM (1996) Mel’nikov analysis of numerically induced chaos in the nonlinear Schrödinger equation. Physica D 89:227–260

    Article  Google Scholar 

  9. Ercolani N, Forest MG, McLaughlin DW (1990) Geometry of the modulational instability. Part III: Homoclinic orbits for the periodic Sine-Gordon equation. Physica D 43:349–384

    Article  Google Scholar 

  10. Haller G, Wiggins S (1992) Orbits homoclinic to resonances: The Hamiltonian case. Physica D 66:298–346

    Article  Google Scholar 

  11. Henderson KL, Peregrine DH, Dold JW (1999) Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29:341

    Article  Google Scholar 

  12. Islas A, Schober CM (2005) Predicting rogue waves in random oceanic sea states. Phys Fluids 17:1–4

    Article  Google Scholar 

  13. Its AR, Rybin AV, Salle MA (1988) On the exact integration of the nonlinear Schrodinger equation. Theoret. and Math. Phys. 74(1): 20–32

    Article  Google Scholar 

  14. Janssen P (2003) Nonlinear four-wave interactions and freak waves. J Phys Oceanogr 33:863–884

    Article  Google Scholar 

  15. Karjanto N (2006) Mathematical aspects of extreme water waves. Ph.D. Thesis, Universiteet Twente

    Google Scholar 

  16. Li Y (1999) Homoclinic tubes in the nonlinear Schrödinger equation under Hamiltonian perturbations. Prog Theor Phys 101:559–577

    Article  Google Scholar 

  17. Li Y, McLaughlin DW (1994) Morse and Mel’nikov functions for NLS Pde’s discretized perturbed NLS systems. I. Homoclinic orbits. Commun Math Phys 612:175–214

    Article  Google Scholar 

  18. Li Y, McLaughlin DW, Shatah J, Wiggins S (1996) Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun Pure Appl Math 49:1175–1255

    Article  Google Scholar 

  19. Longuet-Higgins MS (1952) On the statistical distribution of the heights of sea waves. J Mar Res 11:1245

    Google Scholar 

  20. Matveev VB, Salle MA (1991) Darboux transformations and solitons. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. McLaughlin DW, Schober CM (1992) Chaotic and homoclinic behavior for numerical discretizations of the nonlinear Schrödinger equation. Physica D 57:447–465

    Article  Google Scholar 

  22. Ochi MK (1998) Ocean waves: The stochastic approach. Cambridge University Press, Cambridge

    Google Scholar 

  23. Osborne A, Onorato M, Serio M (2000) The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys Lett A 275:386

    Article  Google Scholar 

  24. Onorato M, Osborne A, Serio M, Bertone S (2001) Freak wave in random oceanic sea states. Phys Rev Lett 86:5831

    Article  Google Scholar 

  25. Schober C (2006) Melnikov analysis and inverse spectral analysis of rogue waves in deep water. Eur J Mech B Fluids 25:602–620

    Article  Google Scholar 

  26. Trulsen K, Dysthe K (1996) A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24:281

    Article  Google Scholar 

  27. Trulsen K, Dysthe K (1997a) Frequency downshift in three-dimensional wave trains in a deep basin. J Fluid Mech 352:359–373

    Article  Google Scholar 

  28. Trulsen K, Dysthe K (1997b) Freak waves – a three dimensional wave simulation. In: Rood EP (ed) Naval hydrodynamics. Proceedings of the 21st symposium on nature. Academic Press, USA

    Google Scholar 

  29. Zakharov VE, Shabat AB (1972) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov Phys JETP 34:62–69

    Google Scholar 

  30. Zeng C (2000) Homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun Pure Appl Math 53:1222–1283

    Article  Google Scholar 

  31. Zeng C (2000) Erratum: Homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun Pure Appl Math 53:1603–1605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Calini, A., Schober, C.M. (2008). Rogue Waves in Higher Order Nonlinear Schrödinger Models. In: Pelinovsky, E., Kharif, C. (eds) Extreme Ocean Waves. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8314-3_2

Download citation

Publish with us

Policies and ethics