Skip to main content

The Empirical Case for Bare Demonstratives in Vision

  • Chapter
Compositionality, Context and Semantic Values

Part of the book series: Studies in Linguistics and Philosophy ((SLAP,volume 85))

Abstract

This chapter draws some parallels between the study of language and the study of visual perception. In both cases there is evidence for modularity and for the productivity of the representations to which they give rise. In both cases it has been recognized that the purely conceptual representations that have been discussed in language and in computational vision are not the whole story. What is missing is some direct connection with token individuals in the world that they describe. In language this connection may be established by a demonstrative term (e.g., this). In the case of vision the parallel would be a singular term that has reference but no descriptive content. I develop a theory of such direct (or demonstrative) reference in vision called Visual Index or FINST theory. I motivate the need for a mechanism of direct reference in vision by describing a number of empirical phenomena. These include the phenomena of single-object advantage, detecting patterns by selecting relevant parts (and executing “visual routines”), and keeping track of individual objects that move among identical distractors (in Multiple Object Tracking experiments). I also discuss the need for a mechanism of direct reference to solve such classical problems of vision as the correspondence problem (computing when several proximal tokens correspond to the same distal object) and the binding problem (establishing when several properties that occur in a visual scene are properties of the same object).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, R., McGeorge, P., Pearson, D., & Milne, A. B. (2004). Attention and expertise in multiple target tracking. Applied Cognitive Psychology, 18, 337–347.

    Article  Google Scholar 

  • Almog, J., Perry, J., & Wettstein, H. (Eds.). (1989). Themes from Kaplan. New York: Oxford University Press.

    Google Scholar 

  • Alvarez, G. A., Arsenio, H. C., Horowitz, T. S., & Wolfe, J. M. (2005). Are mutielement visual tracking and visual search mutually exclusive? Journal of Experimental Psychology: Human Perception and Performance, 31(4), 643–667.

    Google Scholar 

  • Alvarez, G. A., & Cavanagh, P. (2005). Independent attention resources for the left and right visual hemifields. Psychological Science, 16(8), 637–643.

    Article  Google Scholar 

  • Alvarez, G. A., & Scholl, B. J. (2005). How does attention select and track spatially extended objects? New effects of attentional concentration and amplification. Journal of Experimental Psychology: General, 134(4), 461–476.

    Article  Google Scholar 

  • Bahrami, B. (2003). Object property encoding and change blindness in multiple object tracking. Visual Cognition, 10(8), 949–963.

    Article  Google Scholar 

  • Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. N. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20(4), 723–767.

    Google Scholar 

  • Baylis, G. C., & Driver, J. (1993). Visual attention and objects: Evidence for hierarchical coding of location. Journal of Experimental Psychology: Human Percepton and Performance, 19, 451–470.

    Article  Google Scholar 

  • Biederman, I. (1987). Recognition-by-components: A theory of human image interpretation. Psychological Review, 94, 115–148.

    Article  Google Scholar 

  • Blaser, E., Pylyshyn, Z. W., & Domini, F. (1999). Measuring attention during 3D multielement tracking. Investigative Ophthalmology and Visual Science, 40(4), 552 (Abstract).

    Google Scholar 

  • Blaser, E., Pylyshyn, Z. W., & Holcombe, A. O. (2000). Tracking an object through feature-space. Nature, 408(Nov 9), 196–199.

    Article  Google Scholar 

  • Burkell, J., & Pylyshyn, Z. W. (1997). Searching through subsets: A test of the visual indexing hypothesis. Spatial Vision, 11(2), 225–258.

    Article  Google Scholar 

  • Cavanagh, P. (1992). Attention-based motion perception. Science, 257, 1563–1565.

    Article  Google Scholar 

  • Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9(7), 349–354.

    Article  Google Scholar 

  • Cavanagh, P., Labianca, A. T., & Thornton, I. M. (2001). Attention-based visual routines: Sprites. Cognition, 80(1–2), 47–60.

    Article  Google Scholar 

  • Chastain, G. (1995). Location coding with letters versus unfamiliar, familiar and labeled letter-like forms. Canadian Journal of Experimental Psychology, 49(1), 95–112.

    Google Scholar 

  • Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin, and Use. New York: Praeger.

    Google Scholar 

  • Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. H. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80(5), 2657–2670.

    Google Scholar 

  • Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501–517.

    Article  Google Scholar 

  • Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.

    Article  Google Scholar 

  • Fougnie, D., & Marois, R. (2006). Distinct capacity limits for attention and working memory. Evidence from attentive tracking and visual working memory paradigms. Psychological Science, 17(6), 526–534.

    Article  Google Scholar 

  • Goodale, M., & Milner, D. (2004). Sight unseen. New York: Oxford University Press.

    Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hirsch, E. (1982). The concept of identity. Oxford, UK: Oxford.

    Google Scholar 

  • Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of attention. Cognitive Psychology, 4(3), 171–216.

    Article  Google Scholar 

  • Jovicich, J., Peters, R., Koch, C., Braun, J., Chang, L., & Ernst, T. (2001). Brain areas specific for attentional load in a motion-tracking task. Journal of Cognitive Neuroscience, 13, 1048–1058.

    Article  Google Scholar 

  • Kanizsa, G. (1979). Organization in vision: Essays on Gestalt perception. New York: Praeger.

    Google Scholar 

  • Keane, B. P., & Pylyshyn, Z. W. (2006). Is motion extrapolation employed in multiple object tracking? Tracking as a low-level, non-predictive function. Cognitive Psychology, 52(4), 346–368.

    Article  Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4, 219–227.

    Google Scholar 

  • Kosslyn, S. M. (1994). Image and Brain: The resolution of the imagery debate. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lepore, E., & Ludwig, K. (2000). The semantics and pragmatics of complex demonstratives. Mind, 109, 199–240.

    Article  Google Scholar 

  • Lindberg, D. C. (1976). Theories of vision from al-Kindi to Kepler. Chicago: University of Chicago Press.

    Google Scholar 

  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: W.H. Freeman.

    Google Scholar 

  • Ogawa, H., & Yagi, A. (2002). The effect of information of untracked objects on multiple object tracking. Japanese Journal of Psychonomic Science, 22(1), 49–50.

    Google Scholar 

  • O'Hearn, K., Landau, B., & Hoffman, J. E. (2005). Multiple Oobject tracking in people with Williams syndrome and in normally developing children. Psychological Science, 16(11), 905–912.

    Article  Google Scholar 

  • Perry, J. (1979). The problem of the essential indexical. Noûs, 13, 3–21.

    Article  Google Scholar 

  • Posner, M. I., Snyder, C., & Davidson, B. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174.

    Article  Google Scholar 

  • Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32, 65–97.

    Article  Google Scholar 

  • Pylyshyn, Z. W. (1994). Some primitive mechanisms of spatial attention. Cognition, 50, 363–384.

    Article  Google Scholar 

  • Pylyshyn, Z. W. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22(3), 341–423.

    Google Scholar 

  • Pylyshyn, Z. W. (2001a). Connecting vision and the world: Tracking the missing link. In J. Branquinho (Ed.), The Foundations of Cognitive Science (pp. 183–195). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Pylyshyn, Z. W. (2001b). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1/2), 127–158.

    Google Scholar 

  • Pylyshyn, Z. W. (2002). Mental imagery: In search of a theory. Behavioral and Brain Sciences, 25(2), 157–237.

    Google Scholar 

  • Pylyshyn, Z. W. (2003). Seeing and visualizing: It's not what you think. Cambridge, MA: MIT Press/Bradford Books.

    Google Scholar 

  • Pylyshyn, Z. W. (2004). Some puzzling findings in multiple object tracking (MOT): I. Tracking without keeping track of object identities. Visual Cognition, 11(7), 801–822.

    Article  Google Scholar 

  • Pylyshyn, Z. W. (2007). Things and places: How the mind connects with the world (Jean Nicod Lectures Series). Cambridge, MA: MIT Press.

    Google Scholar 

  • Pylyshyn, Z. W., Burkell, J., Fisher, B., Sears, C., Schmidt, W., & Trick, L. (1994). Multiple parallel access in visual attention. Canadian Journal of Experimental Psychology, 48(2), 260–283.

    Google Scholar 

  • Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 1–19.

    Article  Google Scholar 

  • Rock, I., & Gutman, D. (1981). The effect of inattention on form perception. Journal of Experimental Psychology: Human Perception and Performance, 7, 275–285.

    Article  Google Scholar 

  • Saiki, J. (2003). Feature binding in object-file representations of multiple moving items. Journal of Vision, 3(1), 6–21.

    Article  Google Scholar 

  • Scholl, B. J., & Pylyshyn, Z. W. (1999). Tracking multiple items through occlusion: Clues to visual objecthood. Cognitive Psychology, 38(2), 259–290.

    Article  Google Scholar 

  • Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object: Evidence from target-merging in multiple-object tracking. Cognition, 80, 159–177.

    Article  Google Scholar 

  • Scholl, B. J., Pylyshyn, Z. W., & Franconeri, S. L. (1999). When are featural and spatiotemporal properties encoded as a result of attentional allocation? Investigative Ophthalmology & Visual Science, 40(4), 4195.

    Google Scholar 

  • Sears, C. R., & Pylyshyn, Z. W. (2000). Multiple object tracking and attentional processes. Canadian Journal of Experimental Psychology, 54(1), 1–14.

    Google Scholar 

  • Slemmer, J. A., & Johnson, S. P. (2002). Object tracking in ecologially valid occulsion events. Paper presented at the Vision Sciences 2002, Sarasota, FL.

    Google Scholar 

  • Suganuma, M., & Yokosawa, K. (2002). Is multiple object tracking affected by three-dimensional rigidity? Paper presented at the Vision Sciences Society, Sarasota, FL.

    Google Scholar 

  • Tipper, S. P., & Behrmann, M. (1996). Object-centered not scene-based visual neglect. Journal of Experimental Psychology: Human Perception and Performance, 22(5), 1261–1278.

    Article  Google Scholar 

  • Treisman, A. (1986). Properties, parts, and objects. In K. Boff, L. Kaufmann, & J. Thomas (Eds.), Handbook of perception and human performance. New York: Wiley.

    Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  Google Scholar 

  • Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 459–478.

    Article  Google Scholar 

  • Trick, L. M., Perl, T., & Sethi, N. (2005). Age-related differences in multiple-object tracking. Journals of Gerontology: Series B: Psychological Sciences & Social Sciences, 2, 102.

    Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • vanMarle, K., & Scholl, B. J. (2003). Attentive tracking of objects versus substances. Psychological Science, 14(4), 498–504.

    Article  Google Scholar 

  • Viswanathan, L., & Mingolla, E. (1998). Attention in depth: Disparity and occlusion cues facilitate multi-element visual tracking (Abstract). Investigative Ophthalmology and Visual Science, 39(4), 634.

    Google Scholar 

  • Viswanathan, L., & Mingolla, E. (2002). Dynamics of attention in depth: Evidence from multi-element tracking. Perception, 31(12), 1415–1437.

    Article  Google Scholar 

  • Watson, D. G., & Humphreys, G. W. (1997). Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104(1), 90–122.

    Article  Google Scholar 

  • Wiggins, D. (1979). Sameness and Substance. London: UK: Blackwell.

    Google Scholar 

  • Xu, F. (1997). From Lot’s wife to a pillar of salt: Evidence that physical object is a sortal concept. Mind and language, 12, 365–392.

    Article  Google Scholar 

  • Yantis, S., & Jones, E. (1991). Mechanisms of attentional selection: temporally modulated priority tags. Perception and Psychophysics, 50(2), 166–178.

    Google Scholar 

  • Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24, 295–340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenon Pylyshyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pylyshyn, Z. (2009). The Empirical Case for Bare Demonstratives in Vision. In: Stainton, R.J., Viger, C. (eds) Compositionality, Context and Semantic Values. Studies in Linguistics and Philosophy, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8310-5_11

Download citation

Publish with us

Policies and ethics