Skip to main content

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 4))

Abstract

Both the anaerobic and the aerobic oxidation of methane are fundamental microbial processes with far reaching influences on global element cycles and, consequently, on the physico-chemical nature of the hydro- and atmosphere. These processes lead to substantial removal of the radiatively active gas methane and are powerful factors in controlling the composition of ecosystems and the distribution of authigenic deposits at methane-rich sites. For instance, the sulfate-dependent anaerobic oxidation of methane (AOM) mediated by methanotrophic Archaea and sulfate-reducing Bacteria yields hydrogen sulfide and bicarbonate ions, which subsequently react with ions derived from pore waters and the water column to form sulfidic and carbonaceous minerals. The aerobic oxidation of methane, performed by obligate aerobic Bacteria particularly effective at oxic-anoxic boundaries, leads to the generation of carbon dioxide, which is a less radiative gas than methane but has higher residence times in the atmosphere.

The geochemical characteristics of the contemporary Black Sea promote processes associated with the conversion of methane and are considered to resemble those of the Paleo/Mesoproterozoic global ocean. Geochemical and molecular microbiological considerations support the idea that the microbes involved in the AOM emerged before the Archaean – Proterozoic transition, and became more important in the Paleoproterozoic, when oceanic deep waters are thought to contain high amounts of methane and adequate amounts of sulfate. With the rise of atmospheric oxygen in the Paleo/Mesoproterozoic, substantial parts of the global ocean became oxygenated, which promoted the spreading of aerobic methanotrophs. Since then, biogeochemical remnants, like fossil seep deposits or lipid biomarkers strongly depleted in 13C, demonstrate the relevance of methanotrophy in Earth history.

Methane in the contemporary Black Sea is mainly sourced from sedimentary gas reservoirs at emission sites like cold seeps and mud volcanoes. Detailed seismic and hydroacoustic investigations at deep-water cold seep areas on the Ukrainian shelf (northwestern Black Sea), the continental slope off Georgia (southeastern Black Sea) and at mud volcanoes located in the Sorokin Trough (northern Black Sea) provided insights into their subsurface structures, fluid migration pathways, and extents of gas plumes in the water column. This review considers recent studies on sources and migration pathways of methane, and its fate in the sediments in the water column of the Black Sea with special emphasis on the anaerobic and aerobic microbial methane consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhmetzhanov AM, Ivanov MK, Kenyon NH, Mazzini A and Cruise participants (2007) Deep-water cold seeps, sedimentary environments and ecosystems of the Black and Tyrrhenian Seas and Gulf of Cadiz, IOC Technical Series No. 72. UNESCO, 99

    Google Scholar 

  • Aloisi G, Drews M, Wallmann K, Bohrmann G (2004) Fluid expulsion from the Dvurechenskii mud volcano (Black Sea): Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles. Earth Planet Sci Lett 225:347–363

    Google Scholar 

  • Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans. Science 304:87–90

    Google Scholar 

  • Artemov YG, Egorov VN, Polikarpov GG, Gulin SB (2007) Methane emission to the hydro- and atmosphere by gas bubble streams in the Dnieper Paleo-delta, the Black Sea Marine. Ecol J 6:5–26

    Google Scholar 

  • Bahr A, Pape T, Bohrmann G, Mazzini A, Haeckel M, Reitz A, Ivanov M (2008) Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical and lipid biomarker study. Int J Earth Sci, doi: 10.1029/2001GC000286 (in press)

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Mol Biol Rev 43:260–296

    Google Scholar 

  • Barnes RO, Goldberg ED (1976) Methane production and consumption in anaerobic marine sediments. Geology 4:297–300

    Google Scholar 

  • Battistuzzi AU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44–59

    Google Scholar 

  • Baudouin-Cornu P, Thomas D (2007) Evolutionary biology: oxygen at life’s boundaries. Nature 445:35–36

    Google Scholar 

  • Birgel D, Peckmann J, Klautzsch S, Thiel V, Reitner J (2006) Anaerobic and aerobic oxidation of methane at Late Cretaceous seeps in the Western Interior Seaway, USA. Geomicrobiol J 23:565–577

    Google Scholar 

  • Blinova V, Ivanov MK, Bohrmann G (2003) Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, north-eastern Black Sea. Geo-Mar Lett 23:250–257

    Google Scholar 

  • Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci U S A 101:11111–11116

    Google Scholar 

  • Blumenberg M, Seifert R, Nauhaus K, Pape T, Michaelis W (2005) In vitro study of lipid biosynthesis in an anaerobically methane oxidizing microbial mat. Appl Environ Microbiol 71:4345–4351

    Google Scholar 

  • Blumenberg M, Seifert R, Michaelis W (2007) Aerobic methanotrophy in the oxic-anoxic transition zone of the Black Sea water column. Org Geochem 38:84–91

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  • Bohrmann G, Ivanov M, Foucher J-P, Spiess V, Bialas J, Greinert J, Weinrebe W, Abegg F, Aloisi G, Artemov Y, Blinova V, Drews M, Heidersdorf F, Krabbenhöft A, Klaucke I, Krastel S, Leder T, Polikarpov I, Saburova M, Schmale O, Seifert R, Volkonskaya A, Zillmer M (2003) Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Mar Lett 23:239–249

    Google Scholar 

  • Bohrmann G, Pape T, and Cruise participants (2007) Report and preliminary results of R/V METEOR Cruise M72/3, Istanbul – Trabzon – Istanbul, 17 March–23 April, 2007. Marine gas hydrates of the Eastern Black Sea, Berichte, Fachbereich Geowissenschaften, Universitöt Bremen, No. 261, Bremen, 176pp

    Google Scholar 

  • Bohrmann G, Torres ME (2006) Gas hydrates in marine sediments. In: Schulz HD, Zabel M (eds) Marine geochemistry, 2nd edn. Springer, Heidelberg, pp 481–512

    Google Scholar 

  • Bouriak SV, Akhmetjanov AM (1998) Origin of gas hydrate accumulations on the continental slope of the Crimea from geophysical studies. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change, Geological Society, London, special publication 137, pp 215–222

    Google Scholar 

  • Brekke T, Lonne O, Ohm SE (1997) Light hydrocarbon gases in shallow sediments in the northern North Sea. Mar Geol 137:81–108

    Google Scholar 

  • Buffett BA (2000) Clathrate hydrates. Annu Rev Earth Planet Sci 28:477–507

    Google Scholar 

  • Burton EA (1993) Controls on marine carbonate cement mineralogy: review and reassessment. Chem Geol 105:163–179

    Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeog Palaeoclimat Palaeoecol 232:362–407

    Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Google Scholar 

  • Canfield DE, Habicht KS, Thamdrup B (2000) The Archaean sulfur cycle and the early history of atmospheric oxygen. Science 288:658–661

    Google Scholar 

  • Catling DC, Zahnle KJ, McKay C (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth. Science 293:839–843

    Google Scholar 

  • Clennell MB, Hovland M, Booth JS, Henry P, Winters WJ (1999) Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. J Geophys Res 104:22985–23003

    Google Scholar 

  • Des Marais DJ, Strauss H, Summons RE, Hayes JM (1992) Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359:605–609

    Google Scholar 

  • Dickens G (2001) On the fate of past gas: what happens to methane released from a bacterially mediated gas hydrate capacitor? Geochem Geophys Geosyst (G3) 2. doi:10.1029/2000GC00013

    Google Scholar 

  • Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–183

    Google Scholar 

  • Dickens GR, O’Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–971

    Google Scholar 

  • Dickens GR, Castillo MM, Walker JCG (1997) A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25:259–262

    Google Scholar 

  • Durisch-Kaiser E, Klauser L, Wehrli B, Schubert C (2005) Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column. Appl Environ Microbiol 71:8099–8106

    Google Scholar 

  • Egorov VN, Luth U, Luth C, Gulin MB (1998) Gas seeps in the submarine Dnieper Canyon, Black Sea: acoustic, video and trawl data. In: Luth U, Luth C, Thiel H (eds) Methane gas seep explorations in the Black Sea (MEGASEEBS), Project Report Reihe E. University of Hamburg. Berichte des Zentrums für Meeres- und Klimaforschung, pp 11–21

    Google Scholar 

  • Egorov VN, Polikarpov GG, Gulin SB, Artemov YG, Stokozov NA, Kostova SK (2003) Modern conception about forming-casting and ecological role of methane gas seeps from bottom of the Black Sea. Mar Ecol J 2:5–26

    Google Scholar 

  • Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates. Superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300

    Google Scholar 

  • Eremeeva LV, Degterev AK (1993) On the problem of a turbid layer occurring near the upper boundary of the hydrogen sulphide zone in the Black Sea. Phys Oceanogr 4:169–172

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of earth’s earliest sulfur cycle. Science 289:756–758

    Google Scholar 

  • Gal’chenko VF, Abranochkina FN, Bezrukova LV, Sokolova EN, Ivanov MV (1988) Species composition of the aerobic methanotrophic microflora of the Black Sea. Mikrobiologiya 57:305–311

    Google Scholar 

  • Gal’chenko VF, Lein AY, Ivanov MV (2004) Rates of microbial production and oxidation of methane in the bottom sediments and water column of the Black Sea. Microbiology 73:224–236

    Google Scholar 

  • Gaynanov VG, Bouriak SV, Ivanov MK (1998) Seismic evidence for gas accumulation related to the area of mud volcanism in the deep Black Sea. Geo-Mar Lett 18:139–145

    Google Scholar 

  • Greinert J, Artemov Y, Egorov V, De Batist M, McGinnis D (2006) 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Planet Sci Lett 244:1–15

    Google Scholar 

  • Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298:2372–2374

    Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    Google Scholar 

  • Haq BU (1998) Natural gas hydrates: searching for the long-term climatic and slope-stability records. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change, Geological Society, London, special publication 137, pp 303–318

    Google Scholar 

  • Hayes JM (1994) global methanotrophy at the Archaean-Proterozoic transition. In: Bengtson S (ed) Early life on Earth, Nobel Symposium No. 84, Columbia University Press, pp 220–236

    Google Scholar 

  • Heeschen KU, Haeckel M, Hohnberg H-J, Abegg F, Bohrmann G (2007) Pressure coring at gas hydrate-bearing sites in the eastern Black Sea off Georgia. Geophys Res Abstr 9:03078

    Google Scholar 

  • Hinrichs K-U (2002) Microbial fixation of methane carbon at 2.7 Ga: was an anaerobic mechanism possible? Geochem Geophys Geosyst (G^3) 3. doi:10.1029/2001GC000286

    Google Scholar 

  • Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billet D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean margin systems, Springer-Verlag, Heidelberg, pp 457–477

    Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Google Scholar 

  • Hinrichs K-U, Summons RE, Orphan VJ, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701

    Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8:451–463

    Google Scholar 

  • Hoehler TM, Borowski WS, Alperin MJ, Rodriguez NM, Paull CR (2000) Model, stable isotope, and radiotracer characterization of anaerobic methane oxidation in gas hydrate-bearing sediments of the Blake Ridge. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 164, Ocean Drilling Program, pp 79–85

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361:903–915

    Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Google Scholar 

  • Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K, Nunoura T, Nealson KH, Horikoshi K (2004) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455

    Google Scholar 

  • Ivanov MK, Limonov AF, van Weering TCE (1996) Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Mar Geol 132:253–271

    Google Scholar 

  • Ivanov MK, Limonov AF, Woodside JM (1998) Extensive deep fluid flux through the sea floor on the Crimean continental margin (Black Sea). In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change, Geological Society, London, special publication 137, pp 195–213

    Google Scholar 

  • Ivanov MV, Pimenov NV, Rusanov II, Lein AY (2002) Microbial processes of the methane cycle at the North-western shelf of the Black Sea. Estuar Coast Shelf Sci 54:589–599

    Google Scholar 

  • Jones GA, Gagnon AR (1994) Radiocarbon chronology of Black Sea sediments. Deep Sea Res Part I Oceanogr Res Pap 41:531–557

    Google Scholar 

  • Jørgensen BB, Böttcher ME, Lüschen H, Neretin LN, Volkov II (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta 68:2095–2118

    Google Scholar 

  • Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838

    Google Scholar 

  • Kasting JF (2001) The rise of atmospheric oxygen. Science 293:819–820

    Google Scholar 

  • Kasting JF (2005) Methane and climate during the Precambrian era. Precambrian Res 137:119–129

    Google Scholar 

  • Kasting JF, Pavlov AA, Siefert JL (2001) A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere. Orig Life Evol Biosph 31:271–285

    Google Scholar 

  • Kaufman AJ, Xiao S (2003) High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425:279–282

    Google Scholar 

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225–229

    Google Scholar 

  • Kessler JD, Reeburgh WS, Southon J, Seifert R, Michaelis W, Tyler SC (2006) Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea. Earth Planet Sci Lett 243:366–375

    Google Scholar 

  • Klaucke I, Sahling H, Bürk D, Weinrebe W, Bohrmann G (2005) Mapping deep-water gas emissions with sidescan sonar. EOS Trans 86:341–352

    Google Scholar 

  • Klaucke I, Sahling H, Weinrebe W, Blinova V, Bürk D, Lursmanashvili N, Bohrmann G (2006) Acoustic investigation of cold seeps offshore Georgia, Eastern Black Sea. Mar Geol231:51–67

    Google Scholar 

  • Knies J, Damm E, Gutt J, Mann U, Pinturier L (2004) Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: evidences for past seepages. Geochem Geophys Geosyst (G^3) 5. doi:10.1029/2003GC000687

    Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic Archaea (ANME) at cold seeps. Appl Environ Microbiol 71:467–479

    Google Scholar 

  • Konovalov SK, Murray JW (2001) Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). J Mar Syst 31:217–243

    Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A 102:11131–11136

    Google Scholar 

  • Kralj D, Kontrec J, Brecevic L, Falini G, Nöthig-Laslo V (2004) Effect of inorganic anions on the morphology and structure of magnesium calcite. Chem Eur J 10:1647–1656

    Google Scholar 

  • Krastel S, Spiess V, Ivanov M, Weinrebe W, Bohrmann G, Shashkin P, Heidersdorf F (2003) Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea. Geo-Mar Lett 23:230–238

    Google Scholar 

  • Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Böcher R, Thauer RK, Shima S (2003) A conspicious nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881

    Google Scholar 

  • Krüger M, Treude T, Wolters H, Nauhaus K, Boetius A (2005) Microbial methane turnover in different marine habitats. Palaeogeog Palaeoclimatol Palaeoecol 227:6–17

    Google Scholar 

  • Kruglyakova RP, Byakov YA, Kruglyakova MV, Chalenko LA, Shevtsova NT (2004) Natural oil and gas seeps on the Black Sea floor. Geo-Mar Lett 24:150–162

    Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate – a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51

    Google Scholar 

  • Lamy F, Arz HW, Bond GC, Bahr A, Pötzold J (2006) Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography 21. doi:10.1029/2005PA001184

    Google Scholar 

  • Lein AY, Ivanov MV, Pimenov NV, Gulin MB (2002) Geochemical characteristics of the carbonate constructions formed during microbial oxidation of methane under anaerobic conditions. Microbiology 70:78–90

    Google Scholar 

  • Limonov AF, Van Weering TCE, Kenyon NH, Ivanov MK, Meisner LB (1997) Seabed morphology and gas venting in the Black Sea mudvolcano area: observations with the MAK-1 deep-tow sidescan sonar and bottom profiler. Mar Geol 137:121–136

    Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Google Scholar 

  • Lüdmann T, Wong HK, Kondering P, Zillmer M, Petersen J, Flüh E (2004) Heat flow and quantity of methane deduced from a gas hydrate field in the vicinity of the Dnieper Canyon, northwestern Black Sea. Geo-Mar Lett 24:182–193

    Google Scholar 

  • Luth C, Luth U, Gebruk A, Thiel H (1999) Methane gas seeps along the oxic/anoxic gradient in the Black Sea: manifestations, biogenic sediment compounds and preliminary results on benthic ecology. Mar Ecol 20:221–249

    Google Scholar 

  • Martens CS, Berner RA (1974) Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185:1167–1169

    Google Scholar 

  • Mazzini A, Ivanov MK, Parnell A, Stadnitskaia A, Cronin BT, Poludetkina E, Mazurenko L, Van Weering TCE (2004) Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Mar Geol 212:153–181

    Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Google Scholar 

  • Mienert J, Posewang J, Baumann M (1998) Gas hydrates along the northeastern Atlantic margin: possible hydrate-bound margin instabilities and possible release of methane. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change, Geological Society, London, special publication 137, pp 275–291

    Google Scholar 

  • Mienert J, Vanneste M, Bünz S, Andreassen K, Haflidason H, Sejrup HP (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar Petrol Geol 22:233–244

    Google Scholar 

  • Murray JW, Yakushev E (2006) The suboxic transition zone in the Black Sea. In: Neretin LN (ed) Past and present water column anoxia, Springer, Dordrecht, pp 105–138

    Google Scholar 

  • Naudts L, Greinert J, Artemov Y, Staelens P, Poort J, Van Rensbergen P, De Batist M (2006) Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea. Mar Geol 227:177–199

    Google Scholar 

  • Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Google Scholar 

  • Nauhaus K, Treude T, Boetius A, Krüger M (2005) Environmental regulation of the anaerobic oxidation of methane: comparison of ANME-I and ANME-II-communities. Environ Microbiol 7:98–106

    Google Scholar 

  • Niemann H, Lösekann T, De Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Google Scholar 

  • Nikishin AM, Korotaev MV, Ershov AV, Brunet M-F (2003) The Black Sea basin: tectonic history and Neogene-Quaternary rapid subsidence modelling. Sediment Geol 156:149–168

    Google Scholar 

  • Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69:4267–4281

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668

    Google Scholar 

  • Özsoy E,Ünlüata Ü (1997) Oceanography of the Black Sea: a review of some recent results. Earth Sci Rev 42:231–272

    Google Scholar 

  • Pancost RD, Bouloubassi I, Aloisi G, Sinninghe Damsté JS, the Medinaut Shipboard Scientific Party (2001) Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. Org Geochem 32:695–707

    Google Scholar 

  • Pancost RD, Sinninghe Damsté JS (2003) Carbon isotopic composition of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol 195:29–58

    Google Scholar 

  • Pape T, Blumenberg M, Seifert R, Egorov VN, Gulin SB, Michaelis W (2005) Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeogr Palaeoclimatol Palaeoecol 227:31–47

    Google Scholar 

  • Pavlov AA, Hurtgen MT, Kasting JF, Arthur MA (2003) Methane-rich Proterozoic atmosphere? Geology 31:87–90

    Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Google Scholar 

  • Peckmann J, Reimer A, Luth U, Luth C, Hansen BT, Heinicke C, Hoefs J, Reitner J (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Google Scholar 

  • Pimenov NV, Ivanova AE (2005) Anaerobic methane oxidation and sulfate reduction in bacterial mats on coral-like carbonate structures in the Black Sea. Microbiology 74:362–370

    Google Scholar 

  • Pimenov NV, Neretin LN (2006) Composition and activities of microbial communities involved in carbon, sulfur, nitrogen and manganese cycling in the oxic/anoxic interface of the Black Sea. In: Neretin LN (ed) Past and present water column anoxia, Springer, Dordrecht, pp 501–221

    Google Scholar 

  • Pimenov NV, Rusanov II, Poglazova MN, Mityushina LL, Sorokin DY, Khmelenina VN, Trotsenko YA (1997) Bacterial mats on coral-like structures at methane seeps in the Black Sea. Microbiology 66:354–360

    Google Scholar 

  • Pimenov NV, Rusanov II, Yusupov SK, Fridrich J, Lein AY, Wehrli B, Ivanov MV (2000) Microbial processes at the aerobic-anaerobic interface in the deep-water zone of the Black Sea. Microbiology 69:436–448

    Google Scholar 

  • Polikarpov GG, Egorov VN, Gulin SB, Gulin MB, Stokozov NA (1992) Gas seeps from the Black Sea bottom – a new object of molismology. In: Polikarpov GG (ed) Molismology of the Black Sea, Naukova Dumka, Kiev, Ukraine, pp 10–28 (in Russian)

    Google Scholar 

  • Popescu I, De Batist M, Lericolais G, Nouze H, Poort J, Panin N, Versteeg W, Gillet H (2006) Multiple bottom-simulating reflections in the Black Sea: potential proxies of past climate conditions. Mar Geol 227:163–176

    Google Scholar 

  • Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28:337–344

    Google Scholar 

  • Reeburgh WS (1996) “Soft spots” in the global methane budget. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds, Kluwer Academic Publishers, Dordrecht, pp 334–342

    Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Google Scholar 

  • Reeburgh WS, Ward BB, Whalen SC, Sandbeck KA, Kilpatrick KA, Kerkhof LJ (1991) Black Sea methane geochemistry. Deep Sea Res 38:S1189–S1210

    Google Scholar 

  • Reeburgh WS, Tyler SC, Carroll J (2006) Stable carbon and hydrogen isotope measurements on Black Sea water-column methane. Deep Sea Res Part II Top Stud Oceanogr 53:1893–1900

    Google Scholar 

  • Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V (2005a) Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol 227:18–30

    Google Scholar 

  • Reitner J, Peckmann J, Reimer A, Schumann G, Thiel V (2005b) Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51:66–79

    Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    Google Scholar 

  • Ross DA, Degens ET, MacIlvaine J (1970) Black Sea: recent sedimentary history. Science 170:163–165

    Google Scholar 

  • Ryan WBF, Pitmann III WC, Major CO, Shimkus K, Moskalenko V, Jones GA, Dimitrov P, Gorür N, Sakinç M, Yüce H (1997) An abrupt drowning of the Black Sea shelf. Mar Geol 138:119–126

    Google Scholar 

  • Rye R, Holland HD (2000) Life associated with a 2.76 Ga ephemeral pond?: Evidence from Mount Roe #2 paleosol. Geology 28:483–486

    Google Scholar 

  • Sahling H, and Cruise participants (2004) Report and preliminary results of R/V Poseidon cruise P317/4, Istanbul – Istanbul, 16 October–4 November 2004. Berichte aus dem Fachbereich Geowissenschaften der Universitöt Bremen, No. 235, Bremen, 92 pp

    Google Scholar 

  • Saydam C, Tugrul S, Basturk O, Oguz T (1993) Identification of the oxic/anoxic interface by isopycnal surfaces in the black sea. Deep Sea Res Part I Oceanogr Res Pap 40:1405–1412

    Google Scholar 

  • Schmale O, Greinert J, Rehder G (2005) Methane emission from high-intensity marine gas seeps in the Black Sea into the atmosphere. Geophys Res Lett 32. doi:10.1029/2004GL021138

    Google Scholar 

  • Schouten S, Wakeham SG, Sinninghe Damsté JS (2001) Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea. Org Geochem 32:1277–1281

    Google Scholar 

  • Schubert CJ, Coolen MJL, Neretin LN, Schippers A, Abbas B, Durisch-Kaiser E, Wehrli B, Hopmans EC, Sinninghe Damsté JS, Wakeham S, Kuypers MMM (2006a) Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ Microbiol 8:1844–1856

    Google Scholar 

  • Schubert CJ, Durisch-Kaier E, Klauser L, Vazquez F, Wehrli B, Holzner C, Kipfer R, Schmale O, Greinert J, Kuypers MMM (2006b) Recent studies on sources and sinks of methane in the Black Sea. In: Neretin LN (ed) Past and present water column anoxia, Springer, Dordrecht, pp 419–441

    Google Scholar 

  • Seifert R, Nauhaus K, Blumenberg M, Krüger M, Michaelis W (2006) Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro. Org Geochem 37:1411–1419

    Google Scholar 

  • Shen Y, Canfield DE, Knoll AH (2002) Middle proterozoic ocean chemistry: evidence from the McArthur Basin, Northern Australia. Am J Sci 302:81–109

    Google Scholar 

  • Shnukov EF, Lein AY, Egorov VN, Kleshenko SA, Gulin SB, Artemov YG, Arslanov HA, Kutnyi VA, Logvina EA (2004) Discovery in the Black Sea of deep-water biogenic buildups. Dopovidi Natsional’noi Akademii Nauk Ukraini 1:118–122 (in Russian)

    Google Scholar 

  • Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases. CRC Press. 752 pp

    Google Scholar 

  • Stadnitskaia A, Baas M, Ivanov MK, van Weering TCE, Sinninghe Damsté JS (2003) Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin Trough, NE Black Sea. Archaea 1:1–9

    Google Scholar 

  • Stadnitskaia A, Muyzer G, Abbas B, Coolen MJL, Hopmans EC, Baas M, Van Weering TCE, Ivanov MK, Poludetkina E, Sinninghe Damsté JS (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 217:67–96

    Google Scholar 

  • Starostenko V, Buryanov V, Makarenko I, Rusakov O, Stephenson R, Nikishin A, Georgiev G, Gerasimov M, Dimitriu R, Legostaeva O (2004) Topography of the crust-mantle boundary beneath the Black Sea Basin. Tectonophysics 381:211–233

    Google Scholar 

  • Strauss H, Moore T (1992) Abundances and isotopic composition of carbon and sulfur species in whole rock and kerogen samples. In: Schopf JW, Klein C (eds) The proterozoic biosphere, Cambridge University Press, Cambridge, pp 709–789

    Google Scholar 

  • Talbot M, Watson DF, Murrell JC, Carter JF, Farrimond P (2001) Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmopheric pressure chemical ionisation mass spectrometry. J Chromatogr A 921:175–185

    Google Scholar 

  • Teske A, Hinrichs K-U, Edgcomb V, De Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Google Scholar 

  • Thiel V, Peckmann J, Richnow HH, Luth U, Reitner J, Michaelis W (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar Chem 73:97–112

    Google Scholar 

  • Touret JLR (2003) Remnants of early Archaean hydrothermal methane and brines in pillow-breccia from the Isua Greenstone Belt, West Greenland. Precambrian Res 126:219–233

    Google Scholar 

  • Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A (2007) Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl Environ Microbiol 73:2271–2283

    Google Scholar 

  • Tripati A, Elderfield H (2005) Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum. Science 308:1894–1898

    Google Scholar 

  • Tugolesov DA, Gorshkov AS, Meysner LB, Soloviov VV, Khakhalev EM, Akilova YV, Akentieva GP, Gabidulina TI, Kolomeytseva SA, Kochneva TY, Pereturina IG, Plashihina IN (1985) Tectonics of the Mesozoic Sediments of the Black Sea Basin, Moscow, 215 pp (in Russian)

    Google Scholar 

  • Vetriani C, Tran HV, Kerkhof LJ (2003) Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Appl Environ Microbiol 69:6481–6488

    Google Scholar 

  • Wakeham SG, Lewis CM, Hopmans EC, Schouten S, Sinninghe Damsté JS (2003) Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim Cosmochim Acta 67:1359–1374

    Google Scholar 

  • Wakeham SG, Amann R, Freeman KH, Hopmans E, Jørgensen BB, Putnam IF, Schouten S, Sinninghe Damsté JS, Talbot HM, Woebken D (2007) Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org Geochem 38:2070–2097

    Google Scholar 

  • Wallmann K, Drews M, Aloisi G, Bohrmann G (2006) Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes. Earth Planet Sci Lett 248:544–559

    Google Scholar 

  • Weber A, Riess W, Wenzhoefer F, Jørgensen BB (2001) Sulfate reduction in Black Sea sediments: in situ and laboratory radiotracer measurements from the shelf to 2000 m depth. Deep Sea Res Part I Oceanogr Res Pap 48:2073–2096

    Google Scholar 

  • Yefremova AG, Zhizhchenko BP (1974) Occurrence of crystal hydrates of gases in the sediments of modern marine basins. Doklady Akademii Nauk, SSSR Earth Science Section 214:219–220

    Google Scholar 

  • Zillmer M, Flueh ER, Petersen J (2005) Seismic investigation of a bottom simulating reflector and quantification of gas hydrate in the Black Sea. Geophys J Int 161:662–678

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pape, T., Blumenberg, M., Seifert, R., Bohrmann, G., Michaelis, W. (2008). Marine Methane Biogeochemistry of the Black Sea: A Review. In: Dilek, Y., Furnes, H., Muehlenbachs, K. (eds) Links Between Geological Processes, Microbial Activities&Evolution of Life. Modern Approaches in Solid Earth Sciences, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8306-8_9

Download citation

Publish with us

Policies and ethics