Advertisement

Evaporite Microbial Films, Mats, Microbialites and Stromatolites

  • Robin L. Brigmon
  • Penny Morris
  • Garriet Smith
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 4)

Abstract

Evaporitic environments are found in a variety of depositional settings as early as the Archean. Depositional conditions, microbial communities and mineralogical compositions vary significantly as no two settings are identical. The common thread linking all of the settings is that evaporation exceeds precipitation, resulting in elevated concentrations of cations and anions that are higher than in oceanic systems. The Dead Sea and Storrs Lake are terrestrial examples of two diverse-modern evaporitic settings, as the former is below sea level and the latter is a coastal lake on an island in the Caribbean. Each system varies in water chemistry; the Dead Sea-dissolved ions originate from surface weathered materials, springs, and aquifers while the dissolved ion concentration in Storrs Lake is primarily derived from sea water. Consequently, some of the ions, e.g., Sr, Ba are found at significantly lower concentrations in Storrs Lake than in the Dead Sea. The origin of the dissolved ions are ultimately responsible for the pH of each system, the alkaline versus mildly the acidic. Each system exhibits unique biogeochemical properties as the extreme environments select certain microorganisms. Storrs Lake possesses significant biofilms and stromatolitic deposits; the alkalinity varies, depending on rainfall and storm, activity. The microbial community in Storrs Lake is much more diverse and active than those observed in the Dead Sea. The Dead Sea waters are mildly acidic, lack stromatolites, and possess a lower density of microbial populations. The general absence of microbial and biofilm fossilization is due to the depletion of HCO$_3$ and its slightly acidic pH.

Keywords

Southern Basin Microbial Film Storrs Lake Savannah River National Laboratory Surface Mucopolysaccharide Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anati DA (1997) The hydrography of a hypersaline lake. In: Niemi TM, Ben Avraham Z, Gat JR (eds) Oxford monographs on geology and geophysics 36. Oxford Press, London, pp 89–103Google Scholar
  2. Arahal DR, Gutierrez MC, Volcani BE, Ventosa A (2000) Taxonomic analysis of extremely Halophilic Archaea isolated from 56-years-old Dead Sea brine samples. Systematic and Appl Microbiol 23:376–385Google Scholar
  3. Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Y, Castenholz RW, Halvoroson HO (eds) Microbial mats: Stromatolites.. Alan R. Liss Inc., NY, pp 1–22Google Scholar
  4. Berner EK, Berner RA (1996) Global environment: water, air and geochemical cycles. Prentice Hall, New Jersey, 376 pGoogle Scholar
  5. Brehm U, Gorbushina A, Mottershead D (2005) The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Paleogeography, palaeoclimatology, Paleoecology 219: 117–129CrossRefGoogle Scholar
  6. Brigmon RL, De Ridder C (1998) Symbiotic relationship of Thiothrix spp. with Echinoderms. Appl Environ Microbiol 64:3491–3495Google Scholar
  7. Brigmon RL, Martin HW, Morris T, Zam S, Bitton G (1995) Biogeochemical Ecology of Thiothrix spp. in underwater Limestone Caves, Geomicrobiol J 12:141–159Google Scholar
  8. Brigmon RL, Smith GW, Morris PA, Byrne M, McKay DS (2006) Microbial Ecology in Modern Stromatolites from San Salvador, Bahamas. In: Davis RL, Gamble DW (eds) Proceedings of the 12th Symposium on the Geology of the Bahamas and Other Carbonate Regions. Bahamian Field Station, San Salvador, Bahamas, pp 20–31Google Scholar
  9. Buck SG (1980) Stromatolite and ooid deposits within the fluvial and lacustrine sediments of the Precambrian Ventersdorp Supergroup of South Africa. Precambrian Res 12:311–330CrossRefGoogle Scholar
  10. Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. PALAIOS 3:241–254CrossRefGoogle Scholar
  11. Byrne M, Morris PA, Wentworth SJ, Brigmon RL, McKay DS (2001) Microbial biota from fractured stromatolite and biofilm samples: biomarkers from a hypersaline lake. Annual Meeting Geology Society of America, November 1–10, 2001, Boston, Massachusetts, p 452Google Scholar
  12. Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) The Ecology of Cyanobacteria: their diversity in time & space. Kluwer, London, pp 591–611Google Scholar
  13. Chafetz HS, Buczynski C (1992) Bacterially induced lithification of microbial mats. PALAIOS 7:277–293CrossRefGoogle Scholar
  14. Csato IC, Kendall CStC, Nairn AEM, Baum GR (1997) Sequence stratigraphic interpretations in the southern Dead Sea basin, Israel. Geol Soc Am Bull 108:1485–1501CrossRefGoogle Scholar
  15. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280:295–298CrossRefGoogle Scholar
  16. D’Amelio E, Cohen Y, Des Marais DV (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, and Egypt. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities American Society for Microbiology, pp 97–113Google Scholar
  17. Davis RL, Johnson CR (1990) The Karst Hydrology of San Salvador Island, Bahamas. In: Mylroie J.E. (ed.) Proceedings of the 4th Symposium on the Geology of the Bahamas.Bahamian Field Station, San Salvador, Bahamas, pp 118–136Google Scholar
  18. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Continental Shelf Res 20:1257–1273CrossRefGoogle Scholar
  19. De Ridder C, Brigmon RL (2003) “Farming” of microbial mats in the hindgut of echinoids. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms a natural history of life on Earth. Kluwer, The Netherlands, pp 217–225Google Scholar
  20. Des Marais DJ, Canfield SE (1994) The carbon isotope biogeochemistry of microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats. NATO ASI Series, Vol. G 35., Springer-Verlag, Berlin Heidelberg, pp 289–298Google Scholar
  21. Díez B, Bauer K, Bergman B (2007) Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): diversity and diazotrophy. Appl Environ. Microbiol. 73:3656–3668CrossRefGoogle Scholar
  22. Domagalski JL, Orem WH, Eugster HP (1989) Organic geochemistry and brine composition in Great Salt Lake, Mono, and Walker Lakes. Geochemica et Cosmochimica Acta53:2857–2872CrossRefGoogle Scholar
  23. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiol 13:429–436Google Scholar
  24. Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765CrossRefGoogle Scholar
  25. Elliott WM (1994) Stromatolites of the Bahamas. In: The 26th meeting of the association of marine laboratories of the Caribbean. Bahamian Field Station, San Salvador, Bahamas, pp 33–39Google Scholar
  26. Elliott WM (1992) Stromatolites of Stouts Lake, San Salvador Island. Bahamas. In: Proceedings of the fourth symposium on the natural history of the bahamas. Bahamian Field Station, San Salvador, Bahamas, pp 49–58Google Scholar
  27. Ehrlich HL, Zapkin MA (1985) Manganese-rich layers in calcareous deposits long the western shore of the Dead Sea may have a bacterial origin. Geomicrobiol. J. 4:207–221Google Scholar
  28. Elazari-Volcani B (1943) Bacteria in the bottom sediments of the Dead Sea. Nature 152:274–275CrossRefGoogle Scholar
  29. Eriksson PG, Schieber J, Bouougri E, Gerdes G, Porada H, Banerjee S, Bose PK, Sarkar S (2007) Classification of structures left by microbial mats in their host environments. In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneau O (eds) Atlas of microbial mats features within the clastic rock record. ElsevierGoogle Scholar
  30. Farmer JD, Des Marais DJ (1994) Biological versus inorganic processes in stromatolite morphogenesis: observations from mineralizing sedimentary systems. In: Stal LJ, Caumette P (eds) Microbial mats. NATO ASI Series, Vol. G 35. Springer-Verlag, Berlin, Heidelberg, pp 61–68Google Scholar
  31. Fratesi SE, Lynch FL, Kirkland BL, Brown LR (2004) Effects of SEM preparation techniques on the appearance of bacteria and biofilms in the Carter Sandstone. J Sedimentary Res 74:858–867CrossRefGoogle Scholar
  32. Friedman GM (1998) Temperature and salinity effects on $18$O fractionation for rapidly precipitated carbonates: laboratory experiments with alkaline lake water-perspective. Episodes 21:97–98Google Scholar
  33. Gavrieli, I (1997) Halite deposition in the Dead Sea: 1960–1993. In: Niemi TM, Ben-Avraham Z (eds) The Dead Sea—The lake and its setting. Oxford Press, LondonGoogle Scholar
  34. Gavrieli I, Stein M (2006) On the origin and fate of the brines in the Dead Sea basin. In: Enzel Y, Agnon A, Stein M (eds) New Frontiers in Dead Sea Paleoenvironmental Research. Geological Society of American Special Paper 401. pp 183–194Google Scholar
  35. Gavrieli I, Lensky N, Dvorkin Y, Lyakhovsky V, Gertman I (2006) A multi-component chemistry-based model for the Dead Sea: modifications of the 1D Princeton Oceanographic Model. Geol Survey of Israel, Report GSI/24/2006Google Scholar
  36. Gerdes G, Krumbein WE, Reineck HE (1987) Mellum. Portrait einer Insel. Kramer, Frankfurt, 344pGoogle Scholar
  37. Grozinger JP, Knoll AH (1999) Stromatolites in Precambrain carbonates: Evolutionary mile posts or environmental dipsticks? Ann Rev Earth Planet Sci. 27:313–358CrossRefGoogle Scholar
  38. Hall JK (1997) Topography and bathymetry of the Dead Sea depression. In: Niemi TM, Ben Avraham Z, Gat JR (eds) Oxford monographs on geology and geophysics 36. Oxford Press, London, pp 11–21Google Scholar
  39. Harvell D, Jordan-Dahlgren E, Merkel S, Rosenberg E, Raymundo L, Smith G, Weil E, Willis B (2007) Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography 20:60–79Google Scholar
  40. Herut B, Gavrieli I, Halicz L (1997) Sources and distribution of trace and minor elements in the western Dead Sea surface sediments. Appl Geochem 12:497–505CrossRefGoogle Scholar
  41. Huval JH, Latta R, Wallace R, Kushner DJ, Vreeland RH (1995) Description of two new species of Halomonas: Halomonas israelensis sp. nov., Halomonas anadensis sp. nov. Can J Microbiol 41:1124–1131CrossRefGoogle Scholar
  42. Johnson C (2005) Characterization of a coral-associated microbial community: the microbial ecology of Pseudopterogorgia Americana. MS Thesis, Marine Biomedicine and Environmental Science Department, Medical University of South Carolina, Charleston SC, USAGoogle Scholar
  43. Jones B, Renaut RW, Rosen MR (2000) Stromatolites forming in acidic hot-spring waters, North Island, New Zealand. PALAIOS 15:450–475Google Scholar
  44. Kawaguchi T, Decho AW (2002) In situ microspatial imaging using two-photon and confocal laser scanning microscopy of bacteria and extracellular polymeric secretions (EPS) within marine stromatolites. Mar Biotechnol 4:127–131CrossRefGoogle Scholar
  45. Krumbein WE (1978). Algal mats and their lithification. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology. Volume 1: The aquatic environment. Ann Arbor Science, MI, pp 209–225Google Scholar
  46. Krumbein WE, Brehm U, Gerdes G, Gorbushina AA, Levit G, Palinka KA (2003) Biofilm, biodicton, biomat microbialites, oolites, stromatolites, geophysiology, global mechanism, parahistology. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms: a natural history of life on Earth. Kluwer, London, pp 1–27Google Scholar
  47. Leblanc M, Achard B, Othman DB, Luck JM, Betrand-Sarfati J, Personné JCh (1996) Accumulation of arsenic from acidic mine waters by ferrunginous bacterial accretions (Stromatolites). Appl. Geochem 11:541–554CrossRefGoogle Scholar
  48. Lensky NG, Dovrkin Y, Lyakhovsky V (2005) Water, salt and energy balances of the Dead Sea. Water Resour Res 41:1–13CrossRefGoogle Scholar
  49. Lindsay JF, Leven JH (1996) Evolution of a Neoproterozoic to Paleozoic intracratonic setting, Officer Basin, South Australia. Basin Res 8:403–424CrossRefGoogle Scholar
  50. Lowe DR (1983) Restricted shallow water sedimentation of early Archean stromatolitic and evaporitic strata of the Strelley Pool chert, Pilbara Block, Western Australia. Precambrian Res 19:239–283CrossRefGoogle Scholar
  51. Mack EE, Mandelco L, Woese CR, Madigan MT (1993) Rhodospirillum sodomense, sp.l, nov., a Dead Sea Rhodospirillum species. Arch Microbiol. 160:363–371CrossRefGoogle Scholar
  52. MacIntyre S, Flynn KM, Jellison R, Romer JR (1999) Boundary mixing and nutrient fluxes in Mono Lake, California. Limnology and Oceanography 44:512–529CrossRefGoogle Scholar
  53. Martini JEJ (1990) An early Proterozoic playa in the Pretoria Group, Transvaal, South Africa. Precambrian Res 46:341–351CrossRefGoogle Scholar
  54. Morris PA, von Bitter P, Schenk P, Wentworth SJ (2002) Interactions of bryozoans and microbes in chemosynthetic hydrothermal vent system: Big Cove Formation (Lower Codroy Group, Lower Carboniferous, Middle Visean) Port au Port Peninsula, western Newfoundland, Canada. In: Wyse Jackson P, Buttler CJ, Spencer Jones ME (eds) Bryozoan Studies 2001. Balkima Press, The Netherlands, pp 221–228Google Scholar
  55. Morris PA, Wentworth SJ, Nelman M, Byrne M, Longazo T, Galindo C, McKay D, Sams C (2003) Modern microbial fossilization processes as signatures for interpreting ancient terrestrial and extraterrestrial microbial forms. Lunar and Planetary Science Conference XXXIV, Abstract 1909, Houston, TXGoogle Scholar
  56. Morris PA, Soule DF (2005) The potential role of microbial activity and mineralization in exoskeletal development in Microporellidae. In: Moyano H, Cancino JM, Wyse Jackson, PN (eds) Bryozoan Studies. Balkima Publishers, Leiden, London, New York, Philadelphia, Singapore, ISBN 0415372933, pp 181–186Google Scholar
  57. Muir MD (1987) Facies models for Australian Precambrian evaporites. In: Peryt TM (ed) Evaporite basins, Lecture Notes in Earth Sciences 13. Springer-Verlag, Berlin, pp 5–21Google Scholar
  58. Nissenbaum A (1975) The microbiology and biogeochemistry of the Dead Sea. Microbial Ecol 2:139–161CrossRefGoogle Scholar
  59. Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially inducted structures – a new category within the classification of primary structures. J Sedimentary Res 71: 650–656Google Scholar
  60. Olson RA (1984) Genesis of paleokarst and strata-bound zinc-lead-sulfide deposits in a Proterozoic dolostone, northern Baffin Island, Canada. Econ Geol 79:1056–1033CrossRefGoogle Scholar
  61. Oren A (1988) The microbial ecology of the Dead Sea. Adv Microb Ecol 10:193–229Google Scholar
  62. Oren A (1993) Ecology of extremely halophilic micro-organisms. In: Vreeland RH, Hochstein LI (eds) The Biology of Halophilic Bacteria. CRC Press, Boca Raton, FL, pp 25–53Google Scholar
  63. Oren A (1997) Microbiological studies of the Dead Sea: 1892–1992. In: Niemi TM, Ben Avraham Z, Gat JR (eds) Oxford monographs on geology and geophysics 36. Oxford Press, London, pp 205–216Google Scholar
  64. Oren A, Anati DA (1996) Termination of the Dead Sea 1991–1995 stratification: biological and physical evidence. Israel J Earth Sci 45:81–88Google Scholar
  65. Pentecost A, Whitton BA (2000) Limestones. In: Whitton BA, Potts, M (eds) The ecology of cyanobacteria: their diversity in time & space. Kluwer, London, pp 257–279Google Scholar
  66. Pickney J, Paerl HW, Reid RP, Bebout B (1995) Exophysiology of stromatolitic microbial mats, stocking Island, Exuma Cays, Bahamas. Microb Ecol 29:19–37Google Scholar
  67. Pope MC, Grotzinger JP (2003) Paleoproterozoic stark formation, Athapuscow Basin, Northwest Canada: record of cratonic-scale salinity crisis. J Sedim Res 73:280–295CrossRefGoogle Scholar
  68. Reid RP, Dupraz CD, Visscher PT, Sumner DY (2003) Microbial processes forming marine stromatolites. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms–a natural history of life on earth. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 103–118Google Scholar
  69. Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14CrossRefGoogle Scholar
  70. Ritchie KB, Smith GW (2004) Microbial communities of coral surface mucopolysaccharide layers. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer-Verlag, Berlin, Germany, pp 259–263Google Scholar
  71. Robinson MC, Davis LR (1999) San Salvador GIS database. University of New Haven and the Bahamian Field StationGoogle Scholar
  72. Shearman D (1998) The Mono Lake tufas and ikaite columns of Ikka Fjord, Greenland. Geoscientist 8:4–5Google Scholar
  73. Smith G, Hayasaka SS (1982) Nitrogenase activity of bacteria associated with Halodule wrightii roots. Appl Environ Microbiol43:1244–1248Google Scholar
  74. Sneh A, Bartov Y, Weissbrodt T, Rosensaft M (1998) Geology map of Israel, 1:200000, 4 sheets. Israeli Geological SurveyGoogle Scholar
  75. Steinhorn I (1997) Evaporation estimate for the Dead Sea: essential considerations. In: Niemi TM, Ben-Avraham Z, Gat JR (eds) The Dead Sea, the Lake and its setting. Oxford monographs on geology and geophysics 36. Oxford Press, London, pp 122–132Google Scholar
  76. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124CrossRefGoogle Scholar
  77. Stiller M, Nissenbaum A (1999) Geochemical investigation of phosphorus and nitrogen in the hypersaline Dead Sea. Geochimica et Cosmochimica Acta 63:3467–3475CrossRefGoogle Scholar
  78. Swart PK, Ruiz J, Holmes CW (1987) Use of strontium isotopes to constrain the timing and mode of dolomitization of upper Cenozoic sediments in a core from San Salvador, Bahamas. Geology 15:262–265CrossRefGoogle Scholar
  79. Teeter JW (1995) Holocene saline Lake History, San Salvador Island, Bahamas. In: Curran HA, White B (eds) Terrestrial and shallow marine geology of the Bahamas and Bermuda. Boulder, CO. Geological Society of America, Special Paper 300Google Scholar
  80. Thomas-Keprta K, McKay DS, Wentworth SJ, Taunton AE, Stevens TO, Allen CC, Gibson EK, Romanek CS (1998) Bacterial mineralization patterns in basaltic aquifers: implications for possible life in Mars meteorite ALH84001. Geology 26:1031–1035CrossRefGoogle Scholar
  81. Ventosa A, Nieto J, Oren, A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544Google Scholar
  82. Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role sulfur cycling. Am Min 83:1482–1493Google Scholar
  83. Walter MR (1983) Archean stromatolites: evidence of earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, New Jersey, pp 187–213Google Scholar
  84. Wegley L, Yu Y, Breitbart M, Casas V, Kline DI, Rohwer F (2002) Coral-associated Archaea. Mar Ecol Prog Ser 273:89–96CrossRefGoogle Scholar
  85. Weil E, Smith G, Gil-Agudelo D (2006) Status and progress in coral reefs disease research. Dis Aquat Organ 69:1–7CrossRefGoogle Scholar
  86. Yannarell AC, Steppe TF, Paerl HW (2006) Genetic variance in the composition of two functional groups (Diazotrophs and Cyanobacteria) from a hypersaline microbial mat. Appl Environ Microbiol 72:1207–1217CrossRefGoogle Scholar
  87. Yannarell AC, Steppe TF, Paerl HW (2007) Disturbance and recovery of microbial community structure and function following Hurricane Frances. Environ Microbiol 9:576–583.CrossRefGoogle Scholar
  88. Yechieli Y, Gavrieli I, Berkowitz B, Ronen D (1998) Will the Dead Sea die? Geology 2:755–758CrossRefGoogle Scholar
  89. Yechieli Y, Ronen D, Kaufman A (1996) The source and age of groundwater brines in the Dead Sea area, as deduced from $36$ Cl and $14$ C. Geochimica et Cosmochimica Acta 60:1909–1916CrossRefGoogle Scholar
  90. Zabielski VP, Neumann C (1990) Field guide to Storrs Lake, San Salvador, Bahamas. In: 5th Symposium on the geology of the Bahamas Bahamian, Field Station, San Salvador, Bahamas, pp 49–57Google Scholar
  91. Zak, I (1997) Evolution of the Dead Sea brines. In: Niemi TM, Ben-Avraham Z, Gat JR (eds) Oxford monographs on geology and geophysics 36. Oxford Press, London, pp 133–144Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Robin L. Brigmon
    • 1
  • Penny Morris
  • Garriet Smith
  1. 1.Savannah River National LaboratoryBuilding 999W AikenUSA

Personalised recommendations