Mathematical Analysis of Planar Solid Oxide Fuel Cells

  • A. Pramuanjaroenkij
  • S. Kakaç
  • X. Y. Zhou
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Fuel cells are electrochemical devices that convert the chemical energy stored in a fuel directly into electrical power. The main attractive features of fuel cell systems are quiet operation and low emissions. However, some issues in reducing manufacturing and material costs, improving stack performances, their reliabilities and lifetimes, must be solved to enable commercialization. Solid Oxide Fuel Cell (SOFC) is considered as one of the most promising energy conversion device and as an alternative of existing power generation systems. SOFCs operate at high temperatures from 600°C to 1,000°C to ensure sufficient ion conductivity through their electrolytes which are nonconductive to electrons. Main SOFC components include air channel, cathode, electrolyte, anode, fuel channel, and interconnects.

Keywords

Entropy Porosity Zirconia Transportation Carbon Monoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kendall, N.Q. Minh, and S.C. Singhal, in: High-Temperature Solid Oxide Fuel Cells-Fundamentals, Design and Applications, edited by S. Singhal and K. Kendall (Elsevier Science, Oxford, England, 2003), pp. 197-229.Google Scholar
  2. 2.
    M.A. Khaleel and J.R. Selman, in: High-Temperature Solid Oxide Fuel CellsFundamentals, Design and Applications, edited by S. Singhal and K. Kendall (Elsevier Science, Oxford, England, 2003), pp. 293-332.Google Scholar
  3. 3.
    Z.F. Zhou, C. Gallo, M.B. Pague, H. Schobert, and S.N. Lvov, Direct Oxidation of Jet Fuels and Pennsylvania Crude Oil in a Solid Oxide Fuel Cell, Journal of Power Sources 133, 181-187 (2004).CrossRefGoogle Scholar
  4. 4.
    R. O’Hayre, S.W. Cha, W. Colella, and F. Prinz, Fuel Cell Fundamentals (Wiley, New Jersey, 2005).Google Scholar
  5. 5.
    S.H. Chan and Z.T. Xia, Polarization Effects in Electrolyte Electrode-Supported Solid Oxide Fuel Cells, Journal of Applied Electrochemistry 32, 339-347 (2002).CrossRefGoogle Scholar
  6. 6.
    P. Costamagna and K. Honegger, Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization, Journal of the Electrochemical Society 145 (11), A3995-A4007 (1998).CrossRefGoogle Scholar
  7. 7.
    U.G. Bossel, Performance Potentials of Solid Oxide Fuel Cell Configurations (Electric Power Research Institute, Inc., California, 1992)Google Scholar
  8. 8.
    U.G. Bossel, Facts and Figures, Energy agency final report (Swiss Federal Office of Energy, Bern, Switzerland 1992)Google Scholar
  9. 9.
    R. Bove, P. Lunghi, and N.G. Sammes, SOFC Mathematical Model for Systems Simulations. Part One: from a Micro-Detailed to Macro-Black-Box Model, International Journal of Hydrogen Energy 30, 181-187 (2005).Google Scholar
  10. 10.
    S.B. Beale, in: Transport Phenomena in Fuel Cells, edited by B. Sunden and M. Faghri (WIT Press, Massachusetts, 2005), pp. 43-82.CrossRefGoogle Scholar
  11. 11.
    E. Ivers-Tiffée and A.V. Virkar, in: High-Temperature Solid Oxide Fuel CellsFundamentals, Design and Applications, edited by S. Singhal and K. Kendall (Elsevier Science, Oxford, England, 2003), pp. 230-260.Google Scholar
  12. 12.
    U. Pasaogullari and C.Y. Wang, Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cells, Electrochemical Society Proceedings 2003-07, 1403-1412 (2003).Google Scholar
  13. 13.
    J.D.J. VanderSteen, B. Kenney, J.G. Pharoah, and K. Karan, Mathematical Modeling of the Transport Phenomena and the Chemical/Electrochemical Reactions in Solid Oxide Fuel Cells: A Review, Proceedings of Canadian Hydrogen and Fuel Cells 2004, Toronto, Canada (CD-ROM) (2004).Google Scholar
  14. 14.
    R. Bove, and S. Ubertini, Modeling Solid Oxide Fuel Cell Operation: Approaches, Techniques and Results, Journal of Power Sources 159, 543-559 (2006).CrossRefGoogle Scholar
  15. 15.
    R. Suwanwarangkul, E. Croiset, M.W. Fowler, P.L. Douglas, E. Entchev, and M.A. Douglas, Performance Comparison of Fick’s, Dusty-gas and Stefan-Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode, Journal of Power Sources 122, 9-18 (2003).Google Scholar
  16. 16.
    M.M. Hussain, X. Li, and I. Dincer, Mathematical Modeling of Transport Phenomena in Porous SOFC Anodes, International Journal of Thermal Sciences 46, 48-56 (2007).CrossRefGoogle Scholar
  17. 17.
    M.M. Hussain, X. Li, and I. Dincer, Mathematical Modeling of Planar Solid Oxide Fuel Cells, Journal of Power Sources 161, 1012-1022 (2006).CrossRefGoogle Scholar
  18. 18.
    D.L. Damm and A.G. Fedorov, Radiation Heat Transfer in SOFC Materials and Components, Journal of Power Sources 143, 158-165 (2005).CrossRefGoogle Scholar
  19. 19.
    D.L. Damm and A.G. Fedorov, Spectral Rdiative Heat Transfer Analysis of the Planar SOFC, Journal of Fuel Cell Science and Technology 2, 258-262 (2005).CrossRefGoogle Scholar
  20. 20.
    J.D.J. VanderSteen and J.G. Pharoah, Modeling Radiation Heat Transfer with Participating Media in Solid Oxide Fuel Cells, Journal of Fuel Cell Science and Technology 3, 62-67 (2006).CrossRefGoogle Scholar
  21. 21.
    K.J. Daun, S.B. Beale, F. Liu, and G.J. Smallwood, Radiation Heat Transfer in Planar SOFC Electrolytes, Journal of Power Sources 157, 302-310 (2006).CrossRefGoogle Scholar
  22. 22.
    S. Kakac, A. Pramuanjaroenkij, and X.Y. Zhou, A Review of Numerical Modeling of Solid Oxide Fuel Cells, International Journal of Hydrogen Energy 32(7), 761-786 (2006).Google Scholar
  23. 23.
    K. Sudaprasert, R.P. Travis, and R.F. Martinez-Botas, A Computational Fluid Dynamics Model of a Solid Oxide Fuel Cell, Journal of Power and Energy 219, 159- 167 (2005).Google Scholar
  24. 24.
    R. Suwanwarangkul, E. Croiset, E. Entchev, S. Charojrochkul, M.D. Pritzker, M.W. Fowler, P.L. Douglas, S. Chewathanakup, and H. Mahuadom, Experimental and Modeling Study of Solid Oxide Fuel Cell Operating with Syngas Fuel, Journal of Power Sources 161, 308-322 (2006).CrossRefGoogle Scholar
  25. 25.
    R.T. Leah, N.P. Brandon, and P. Aguiar, Modelling of Cells, Stacks, and Systems Based Around Metal Supported Planar IT-SOFC Cells with CGO Electrolytes Operating at 500-600°C, Journal of Power Sources 145, 336-352 (2005).CrossRefGoogle Scholar
  26. 26.
    J. Larminie and A. Dicks, Fuel Cell Systems Explained (Wiley, West Sussex, England 2003).Google Scholar
  27. 27.
    J. Newman and K. Thomas-Alyea, Electrochemical Systems (Wiley, New Jersey, 2004).Google Scholar
  28. 28.
    R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena (Wiley, New York, 1962).Google Scholar
  29. 29.
    G. Dagan, Flow and Transport in Porous Formations (Springer-Verlag, New York, 1989).Google Scholar
  30. 30.
    X. Li, Principles of Fuel Cells (Taylor & Francis, New York, 2006).Google Scholar
  31. 31.
    P. Costamagna, P. Costa, and V. Antonucci, Micro-modeling of solid oxide fuel cell electrodes, Electrochimica Acta 43, 375-394 (1998).CrossRefGoogle Scholar
  32. 32.
    J. Yuan and B. Sunden, Analysis of Intermediate Temperature Solid Oxide Fuel Cell Transport Processes and Performance, Journal of Heat Transfer 127, 1380-1390 (2005).CrossRefGoogle Scholar
  33. 33.
    V.V. Kharton, F.M.B. Marques, and A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics 174, 135-149 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • A. Pramuanjaroenkij
    • 1
    • 2
  • S. Kakaç
    • 3
  • X. Y. Zhou
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of MiamiCoral Gables
  2. 2.Department of Mechanical Engineering, Faculty of Science and EngineeringKasetsart UniversitySakonnakhonThailand
  3. 3.TOBB University of Economics and Technology SogutozuAnkaraTurkey

Personalised recommendations