Skip to main content

A Review on Miniaturization of Solid Oxide Fuel Cell Power Sources-II: From System to Material

  • Conference paper
Mini-Micro Fuel Cells

Solid oxide fuel cell (SOFC) is an electrochemical power source that meets the technical expectations for no or low emission and high energy efficiency in future hydrogen economy or renewable energy economy. The high fuel flexibility of SOFC permits the SOFC technology to establish and expand its market niche and to serve as a primary power generation technology in a long transition period. SOFC technology is expected to play an important role in this transition period in circumventing the problems of energy shortage and energy consumption related emissions when the capacity of the renewable energy production is still small. SOFC technology would play an essential role in facilitating the transition from current nonrenewable energy technologies to hydrogen energy technologies that harness unlimited renewable energy sources.

Current commercialization of miniaturized or micro-SOFC is targeted the markets for auxiliary power units (APU), uninterrupted power sources (UPS), and combined heat and power (CHP) for small-scale and mediumscale power generation. However, miniaturization of conventional large SOFC systems is facing significant technical barriers. One of them is the trend that enhancement of specific power or power density will result in a reduction of energy efficiency of the systems. For example, state-of-the-art SOFC systems that have comparable power density to that of IC engine based APUs and CHPs are as efficient as these IC engine based power sources. If this trend can’t be reversed, it would be difficult for the SOFC technology to maintain and expand its market niches, which is crucial for the development of the renewable energy technologies. This paper will review literature and identify the current technical limitations that hinder the advancement of the micro-SOFC technology and reflect recent developments that will lead to solutions. This review will include accounts on system, device, component, and material levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kendall, N.Q. Minh, and S.C. Singhal, in: High-Temperature Solid Oxide Fuel Cells-Fundamentals, Design and Applications, edited by S. Singhal and K. Kendall (Elsevier Science, Oxford, England, 2003), pp. 197-229.

    Google Scholar 

  2. M.A. Khaleel and J.R. Selman, in: High-Temperature Solid Oxide Fuel CellsFundamentals, Design and Applications, edited by S. Singhal and K. Kendall (Elsevier Science, Oxford, England, 2003), pp. 293-332.

    Google Scholar 

  3. C. Song, Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century. Catalysis Today 77, 17-49 (2002).

    Article  Google Scholar 

  4. EG&G Technical Services, Inc., Fuel Cell Handbook, Seventh Edition. U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, West Virginia, 2004.

    Google Scholar 

  5. M.C. Williams, J.P. Strakey, and SC. Singhal, U.S. distributed generation fuel cell program. Journal of Power Sources 131, 79-85 (2004).

    Article  Google Scholar 

  6. Aidu Qi, Brant Peppley, and Kunal Karan, Integrated fuel processors for fuel cell application: A review. Fuel Processing Technology 88, 3-22 (2007).

    Article  Google Scholar 

  7. Steven Shaffer, Update on Delphi’s Development of a Solid Oxide Fuel Cell Power System, Honolulu, Hawaii, 2006 Fuel Cell Seminar, 2006.

    Google Scholar 

  8. Julian Dinsdale, Karl Föger, Raj Ratnaraj, Jonathan Love, and Alison Washusen Ceramic Fuel Cells Limited (CFCL), COMMERCIALISATION OF CFCL’S ALLCERAMIC STACK TECHNOLOGY Paper presented at the Fuel Cell Seminar, Miami, November 2003.

    Google Scholar 

  9. R.J. Braun, S.A. Klein, and D.T. Reindl, Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications. Journal of Power Sources 158, 1290-1305 (2006).

    Article  Google Scholar 

  10. Tsang-Dong Chung, Wen-Tang Hong, Yau-Pin Chyou, Dong-Di Yu, Kin-Fu Lin, and Chien-Hsiung Lee, Efficiency analyses of solid oxide fuel cell power plant systems. Applied Thermal Engineering. Publication proof, 2007.

    Google Scholar 

  11. Daniel G. Löffler, Kyle Taylor, and Dylan Mason, A light hydrocarbon fuel processor producing high-purity hydrogen. Journal of Power Sources 117, 84-91 (2003).

    Article  Google Scholar 

  12. A.L. Clerk, Advances in catalysts for internal reforming in high temperature fuel cells. Journal of Power Sources 71, 111-121 (1998).

    Article  Google Scholar 

  13. Stephen H. Clarke, Andrew L. Dicks, Kevin Pointon, Thomas A. Smith, and Angie Swann, Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells. Catalysis Today 38, 41l-423 (1997).

    Article  Google Scholar 

  14. P. Aguiar, C.S. Adjiman, and N.P. Brandon, Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell II. Model-based dynamic performance and control. Journal of Power Sources 147, 136-147 (2005).

    Article  Google Scholar 

  15. P. Aguiar, D. Chadwick, and L. Kershenbaum, Modelling of an indirect internal reforming solid oxide fuel cell. Chemical Engineering Science 57, 1665-1677 (2002).

    Article  Google Scholar 

  16. J.R. Rostrup-Nielsen, Production of synthesis gas. Catalysis Today 18, 305-324 (1993).

    Article  Google Scholar 

  17. Jens R. Rostrup-Nielsen, New aspects of syngas production and use. Catalysis Today 63, 159-164 (2000).

    Article  Google Scholar 

  18. S. Ahmed and M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells. International Journal of Hydrogen Energy 26, 291-301 (2001).

    Article  Google Scholar 

  19. Bettina Lenz, and Thomas Aicher, Catalytic autothermal reforming of Jet fuel. Journal of Power Sources. Journal of Power Sources 149, 44-52 (2005).

    Article  Google Scholar 

  20. Praveen K. Cheekatamarla, and C.M. Finnerty Reforming catalysts for hydrogen generation in fuel cell applications. Journal of Power Sources 160, 490-499 (2006).

    Article  Google Scholar 

  21. Meng Ni, Dennis Y.C. Leung, and Michael K.H. Leung, A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, publication proof, 2007.

    Google Scholar 

  22. Praveen K. Cheekatamarla, and Alan M. Lane, Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells I. Activity tests and sulfur poisoning. Journal of Power Sources 152, 256-263 (2005).

    Article  Google Scholar 

  23. S. Krummricha, B. Tuinstra, G. Kraaij, J. Roes d, and H. Olgun, Diesel fuel processing for fuel cells - DESIRE. Journal of Power Sources 160, 500-504 (2006).

    Article  Google Scholar 

  24. A. Docter and A. Lamm, Gasoline fuel cell systems. Journal of Power Sources 84, 194-200 (1999).

    Article  Google Scholar 

  25. Inyong Kang, Joongmyeon Bae, and Gyujong Bae, Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications. Journal of Power Sources 163, 538-546 (2006).

    Article  Google Scholar 

  26. Jens R. Rostrup-Nielsen, Industrial relevance of coking. Catalysis Today 37, 225-232 (1997).

    Article  Google Scholar 

  27. Xiaoliang Ma, Subramani Velu, Jae Hyung Kim, Chunshan Song, Deep desul-furization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Applied Catalysis B: Environmental 56, 137-147 (2005).

    Article  Google Scholar 

  28. C. Song, An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today 86, 211-263 (2003).

    Article  Google Scholar 

  29. Yixin Lu and Laura Schaefer, A solid oxide fuel cell system fed with hydrogen sulfide and natural gas. Journal of Power Sources 135, 184-191 (2004).

    Article  Google Scholar 

  30. I.V. Babich and J.A. Moulijn, Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82, 607-631 (2003).

    Article  Google Scholar 

  31. Sylvette Brunet, Damien Mey, Guy Pe'rot, Christophe Bouchy, and Fabrice Diehl, On the hydrodesulfurization of FCC gasoline: a review. Applied Catalysis A: General 278, 143-172 (2005).

    Article  Google Scholar 

  32. G. Murali Dhar, B.N. Srinivas, M.S. Rana, Manoj Kumar, and S.K. Maity, Mixed oxide supported hydrodesulfurization catalysts - a review. Catalysis Today 86, 45-60 (2003).

    Article  Google Scholar 

  33. Shaowu Zha, Philip Tsang, Zhe Cheng, and Meilin Liu, Electrical properties and sulfur tolerance of La 0.75Sr 0.25 Cr 1-x MnxO3. Journal of Solid State Chemistry 178, 18441850 (2005).

    Article  Google Scholar 

  34. Zhe Cheng, Shaowu Zha, Luis Aguilar, and Meilin Liu, Chemical, electrical, and thermal properties of strontium doped lanthanum vanadate. Solid State Ionics 176, 1921-1928 (2005).

    Article  Google Scholar 

  35. Luis Aguilar, Shaowu Zha, Zhe Cheng, Jack Winnick, Meilin Liu, A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels. Journal of Power Sources 135, 17-24 (2004).

    Article  Google Scholar 

  36. R.R. Lesieur, T.J. Corrigan, US6203587B1, Mar. 20, 2001.

    Google Scholar 

  37. S. Ahmed, S.H.D. Lee, J.D. Carter, and M. Drumpelt, US6713040B2, Mar. 30 2004.

    Google Scholar 

  38. J.M. Zalc and D.G. Löffler, Fuel processing for PEM fuel cells: transport and kinetic issues of system design. Journal of Power Sources 111, 58-64 (2002).

    Article  Google Scholar 

  39. L. Bobrova, I. Zolotarsky, V. Sadykov, and V. Sobyanin, Hydrogen-rich gas production from gasoline in a short contact time catalytic reactor. International Journal of Hydrogen Energy, publication proof, 2006.

    Google Scholar 

  40. D.A. Hickman and L.D. Schmidt, Synthesis gas formation by direct oxidation of methane over pt monoliths. Journal of Catalysis 138, 267-282 (1992).

    Article  Google Scholar 

  41. S.S. Bharadwaj and L.D. Schmidt, Catalytic partial oxidation of natural gas to syngas. Fuel Processing Technology 42, 109-127 (1995).

    Article  Google Scholar 

  42. Jakob J. Krummenacher, Kevin N. West, and Lanny D. Schmidt, Catalytic partial oxidation of higher hydrocarbons at millisecond contact times: decane, hexadecane, and diesel fuel. Journal of Catalysis 215, 332-343 (2003).

    Article  Google Scholar 

  43. Jakob J. Krummenacher and Lanny D. Schmidt, High yields of olefins and hydrogen from decane in short contact time reactors: rhodium versus platinum. Journal of Catalysis 222, 429-438 (2004).

    Article  Google Scholar 

  44. Marco Castaldi, Maxim Lyubovsky, Rene LaPierre, and William C. Pfefferle and Subir Roychoudhury, Performance of Microlith Based Catalytic Reactors for an Isooctane Reforming System. Precision Combustion, Inc., SAE International, 2003-01-1366.

    Google Scholar 

  45. Subir Roychoudhury, Marco Castaldi, Maxim Lyubovsky, Rene LaPierre, and Shabbir Ahmed, Microlith catalytic reactors for reforming iso-octane-based fuels into hydrogen. Journal of Power Sources 152, 75-86 (2005).

    Article  Google Scholar 

  46. M.V. Kothare, Dynamics and control of integrated microchemical systems with application to micro-scale fuel processing. Computers and Chemical Engineering 30, 1725-1734 (2006).

    Article  Google Scholar 

  47. By Robert S. Wegeng, Larry R. Pederson, Ward E. TeGrotenhuis, and Greg A. Whyatt, Compact fuel processors for fuel cell powered automobiles based on microchannel technology. Fuel Cell Bulletin 28, 2001.

    Google Scholar 

  48. A.Y. Tonkovich, J.L. Zilka, M.J. LaMont, Y. Wang, and R.S. Wegeng, Microchannel reactors for fuel processing applications. I. Water gas shift reactor. Chemical Engineering Science 54, 2947-2951 (1999).

    Google Scholar 

  49. Jamelyn D. Holladay, Evan O. Jones, Max Phelps, and Jianli Hu, Microfuel processor for use in a miniature power supply. Journal of Power Sources 108, 21-27 (2002).

    Article  Google Scholar 

  50. J.D. Holladay, J.S. Wainright, E.O. Jones, and S.R. Gano. Power generation using a mesoscale fuel cell integrated with a microscale fuel processor. Journal of Power Sources 130, 111-118 (2004).

    Article  Google Scholar 

  51. J.D. Holladay, E.O. Jones, R.A. Dagle, G.G. Xia, C. Cao, and Y. Wang, High efficiency and low carbon monoxide micro-scale methanol processors. Journal of Power Sources 131, 69-72 (2004).

    Article  Google Scholar 

  52. Shin-Kun Ryi, Jong-Soo Park, Seung-Hoon Choi, Sung-Ho Cho, and Sung-Hyun Kim, Novel micro fuel processor for PEMFCs with heat generation by catalytic combustion. Chemical Engineering Journal 113, 47-53 (2005).

    Article  Google Scholar 

  53. Yeena Shin, Okyoun Kim, Jong-Chul Hong, Jeong-Hoon Oh, Woo-Jae Kim, Seungjoo Haam, and Chan-Hwa Chung, The development of micro-fuel processor using low temperature co-fired ceramic (LTCC). International Journal of Hydrogen Energy 31, 1925-1933 (2006).

    Article  Google Scholar 

  54. E.R. Delsman, M.H.J.M. De Croon, A. Pierik, G.J. Kramer, P.D. Cobden, Ch. Hofmann, V. Cominos, and J.C. Schouten, Design and operation of a preferential oxidation microdevice for a portable fuel processor. Chemical Engineering Science 59, 4795-4802 (2004).

    Article  Google Scholar 

  55. Shuji Tanaka, Kuei-Sung Chang, Kyong-Bok Min, Daisuke Satoh, Kazushi Yoshida, and Masayoshi Esashi, MEMS-based components of a miniature fuel cell/fuel reformer system. Chemical Engineering Journal 101, 143-149 (2004).

    Article  Google Scholar 

  56. Taegyu Kim and Sejin Kwon, Catalyst preparation for fabrication of a MEMS fuel reformer. Chemical Engineering Journal 123, 93-102 (2006).

    Article  Google Scholar 

  57. Arunabha Kundu, Jae Hyuk Jang, Hong Ryul Lee, Sung-Han Kim, Jae Hyoung Gil, Chang Ryul Jung, Yong Soo Oh, MEMS-based micro-fuel processor for application in a cell phone. Journal of Power Sources 162, 572-578 (2006).

    Article  Google Scholar 

  58. Jae Hyoung Gil, Chang Ryul Jung, and Yong Soo Oh, MEMS-based micro-fuel processor for application in a cell phone. Journal of Power Sources 162, 572-578 (2006).

    Article  Google Scholar 

  59. Oh Joong Kwon, Sun-Mi Hwang, Je Hyun Chae, Moo Seong Kang, Jae Jeong Kim, Performance of a miniaturized silicon reformer-PrOx-fuel cell system. Journal of Power Sources 165, 342-346 (2007).

    Article  Google Scholar 

  60. T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, Material research for planar SOFC stack. Solid State Ionics 148, 513- 519 (2002).

    Article  Google Scholar 

  61. H.Y. Jung, S.-H. Choi, H. Kim, J.-W. Son, J. Kim, H.-W. Lee, and J.-H. Lee, Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm × 10 cm anode-supported cells. Journal of Power Sources 159, 478-483 (2006).

    Article  Google Scholar 

  62. Zhenrong Wang, Jiqin Qian, Jiadi Cao, Shaorong Wan, and Tinglian Wen, A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs). Journal of Alloys and Compounds, publication proof, 2006.

    Google Scholar 

  63. Sonja M. Gross, Thomas Koppitz, Josef Remmel, Jean-Bernard Bouche, and Uwe Reisgen, Joining properties of a composite glass-ceramic sealant. Fuel Cell Bulletin, 12-16 (2006).

    Google Scholar 

  64. N.M. Sammes, and Y. Du, R. Bove, Design and fabrication of a 100W anode supported micro-tubular SOFC stack. Journal of Power Sources 145, 428-434 (2005).

    Article  Google Scholar 

  65. T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, and M. Awano, Fabrication and characterization of micro tubular SOFCs for advanced ceramic reactors. Journal of Alloys and Compounds, publication proof, 2007.

    Google Scholar 

  66. Toshio Suzuki, Toshiaki Yamaguchi, Yoshinobu Fujishiro, and Masanobu Awano Current collecting efficiency of micro tubular SOFCs. Journal of Power Sources 163, 737-742 (2007).

    Article  Google Scholar 

  67. Toshio Suzuki, Yoshihiro Funahashi, Toshiaki Yamaguchi, Yoshinobu Fujishiro, and Masanobu Awano, Anode-supported micro tubular SOFCs for advanced ceramic reactor system. Journal of Power Sources, publication proof, 2007.

    Google Scholar 

  68. Yoshihiro Funahashi, Toru Shimamori, and Toshio Suzuki, Fabrication and characterization of components for cube shaped micro tubular SOFC bundle. Journal of Power Sources 163, 731-736 (2007)

    Article  Google Scholar 

  69. Masaya Yano, Atsuko Tomita, Mitsuru Sano, and Takashi Hibino, Recent advances in single-chamber solid oxide fuel cells: a review. Solid State Ionics 177, 3351-3359 (2007).

    Article  Google Scholar 

  70. Zongping Shao, Jennifer Mederos, William C. Chueh, and Sossina.M. Haile, High power-density single-chamber fuel cells operated on methane. Journal of Power Sources 162, 589-596 (2006).

    Article  Google Scholar 

  71. Toshio Suzuki, Piotr Jasinski, Vladimir Petrovsky, Harlan U. Anderson, and Fatih Dogan, Performance of a porous electrolyte in single-chamber SOFCs. Journal of The Electrochemical Society, 152(3) A527-A531 (2005).

    Article  Google Scholar 

  72. J. Fleig, H.L. Tuller, and J. Maier, Electrodes and electrolytes in micro-SOFCs: a discussion of geometrical constraints. Solid State Ionics 174, 261-270 (2004).

    Article  Google Scholar 

  73. Tatsuya Iida, Mitsunobu Kawano, Toshiaki Matsui, Ryuji Kikuchi, and Koichi Eguchia, Internal reforming of SOFCs: carbon deposition on fuel electrode and subsequent deterioration of cell. Journal of the Electrochemical Society, 154 (2), B234-B241 (2007).

    Article  Google Scholar 

  74. S. Assabumrungrat, N. Laosiripojana, and P. Piroonlerkgul, Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell. Journal of Power Sources 159, 1274-1282 (2006).

    Article  Google Scholar 

  75. N. Laosiripojanaa and S. Assabumrungrat, The effect of specific surface area on the activity of nano-scale ceria catalysts for methanol decomposition with and without steam at SOFC operating temperatures. Chemical Engineering Science 61, 2540 - 2549 (2006).

    Article  Google Scholar 

  76. Samuel Georges, Gaelle Parrour, Marc Henault, and Jacques Fouletier, Gradual internal reforming of methane: a demonstration. Solid State Ionics 177, 2109-2112 (2006).

    Article  Google Scholar 

  77. J.-M. Kleina,Y. Bultel, S. Georges, and M. Pons, Modeling of a SOFC fuelled by methane: from direct internal reforming to gradual internal reforming. Chemical Engineering Science 62, 1636-1649 (2007).

    Article  Google Scholar 

  78. Zhongliang Zhan and Scott A. Barnett, Use of a catalyst layer for propane partial oxidation in solid oxide fuel cells. Solid State Ionics 176, 871-879 (2005).

    Article  Google Scholar 

  79. Stephen J. Skinner and John A. Kilner, Oxygen ion conductors. Materials Today, 30-37 (2003).

    Google Scholar 

  80. W.Z. Zhu and S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Materials Science and Engineering A362, 228-239 (2003).

    Google Scholar 

  81. Da Yu Wang, D.S. Park, J. Griffith, and A.S. Nowick, Oxygen ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 2, 95-105 (1981).

    Article  Google Scholar 

  82. N.M. Sarnrnes, and Zhihong Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials. Solid State Ionics 100, 39-44 (1997).

    Article  Google Scholar 

  83. Jeffrey W. Fergus, Electrolytes for solid oxide fuel cells. Journal of Power Sources 162, 30-40 (2006).

    Article  Google Scholar 

  84. V.V. Kharton, F.M.B. Marques, and A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174, 135- 149 (2004).

    Article  Google Scholar 

  85. N.M. Sammes, G.A. Tompsett, H. NaÈ fe, and F. Aldinger, Bismuth based oxide electrolytes: structure and ionic conductivity. Journal of the European Ceramic Society 19, 1801-1826 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Zhou, X.Y., Pramuanjaroenkij, A., Kakaç, S. (2008). A Review on Miniaturization of Solid Oxide Fuel Cell Power Sources-II: From System to Material. In: Kakaç, S., Pramuanjaroenkij, A., Vasiliev, L. (eds) Mini-Micro Fuel Cells. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8295-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8295-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8293-1

  • Online ISBN: 978-1-4020-8295-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics