Skip to main content

A Review on Miniaturization of Solid Oxide Fuel Cell Power Sources-I: State-of-The-Art Systems

  • Conference paper
Book cover Mini-Micro Fuel Cells

Solid oxide fuel cells (SOFCs) can play an indispensable role in the futurist’s hydrogen economy. SOFC operating at 800–1,000°C is a very efficient power source because the heat generated from SOFCs can be used for co-generation of power with a turbine and the rejected heat can still be used for heating. Thus, it is envisioned that large-scale stationary SOFC systems can achieve a high energy efficiency (>60%) and high fuel efficiency (>80%). Due to their high operating temperatures, SOFCs can directly utilize biofuels, natural gas, syngas (H2 + CO), and hydrogen for power generation or operate on reformate from a relatively simple fuel processor. Thus, deployment of SOFC technology does not depend on availability of hydrogen transport and storage technologies. The major obstacles for deployment of SOFCs are the high manufacture costs, voluminous structure, and limited reliability and durability. Should these obstacles be removed, SOFCs can be universal power sources for diver-sified and decentralized large-scale energy sources that are available during the transition period to and in the hydrogen economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kendall, N.Q. Minh, and S.C. Singhal, in: High-Temperature Solid Oxide Fuel Cells-Fundamentals, Design and Applications, edited by S. Singhal and K. Kendall (Elsevier Science, Oxford, England, 2003), pp. 197-229.

    Google Scholar 

  2. M.A. Khaleel and J.R. Selman, in: High-Temperature Solid Oxide Fuel CellsFundamentals, Design and Applications, edited by S. Singhal and K. Kendall (Elsevier Science, Oxford, England, 2003), pp. 293-332.

    Google Scholar 

  3. C. Song, Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century. Catalysis Today 77, 17-49 (2002).

    Article  Google Scholar 

  4. EG&G Technical Services, Inc., Fuel Cell Handbook, 7th edn US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, West Virginia, 2004.

    Google Scholar 

  5. M.C. Williams, J.P. Strakey, and S.C. Singhal, US distributed generation fuel cell program. Journal of Power Sources 131, 79-85 (2004).

    Article  Google Scholar 

  6. J. Zizelman, J. Botti, J. Tachtler, and W. Strobl, Automotive Engineering International 14, September, 2000.

    Google Scholar 

  7. M.C. Williams, J.P. Strakey, and W.A. Surdoval. The US Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program. Journal of Power Sources 143, 191-196 (2005).

    Article  Google Scholar 

  8. Paolo Agnolucci and William McDowall, Technological change in niches: auxiliary power units and the hydrogen economy. Technological Forecasting & Social Change 74, 1394-1410 (2007).

    Article  Google Scholar 

  9. Gregorio Marbán and Teresa Valdés-Solís, Towards the hydrogen economy? International Journal of Hydrogen Energy 32, 1625-1637 (2007).

    Article  Google Scholar 

  10. Seth Dunn, Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy 27, 235-264 ((2002).

    Article  Google Scholar 

  11. Carl-Jochen Winter, Electricity, hydrogen—competitors, partners? International Journal of Hydrogen Energy 30, 1371-1374 (2005).

    Article  Google Scholar 

  12. P. Kruger, Electric power requirements in the United States for large-scale production of hydrogen fuel. International Journal of Hydrogen Energy 25, 1023-33 (2000).

    Article  Google Scholar 

  13. William McDowalla and Malcolm Eamesb, Towards a sustainable hydrogen economy: a multi-criteria sustainability appraisal of competing hydrogen futures. International Journal of Hydrogen Energy, proof for publication, 2007.

    Google Scholar 

  14. S. Flipsen, Power sources compared: the ultimate truth? Journal of Power Sources 162, 927-934 (2006).

    Article  Google Scholar 

  15. R.K. Dixon, The US Hydrogen program; Department of Energy., http://www.hydrogen.energy.gov/

  16. de la Casa-Lillo MA, Lamari-Darkrim F, Cazorla-Amorós D, and Linares-Solano A. Hydrogen storage in activated carbons and activated carbon fibers. Journal of Physical Chemistry B, 106, 10930-10934 (2002).

    Article  Google Scholar 

  17. C.-J. Brodrick, T.E. Lipman, M. Farshchi, N.P. Lutsey, H.A. Dwyer, D. Sperling, I. Gouse, S. William, D.B. Harris, and F.G. King, Evaluation of fuel cell auxiliary power units for heavy-duty diesel trucks. Transportation Research, Part D: Transport and Environment 7 (4), 303-316 (2002).

    Article  Google Scholar 

  18. S.F.J. Flipsen, Power sources compared: the ultimate truth?, Journal of Power Sources 162, 927-934 (2006).

    Article  Google Scholar 

  19. Breakthrough Fuel Cell on a Chip™ Technology Recognized as “Life-Changing Innovation”, www.fuelcellworks.com, Dec. 2006.

  20. Arthur D. Little, Conceptual design of POX SOFC 5 kw net system final report to the department of energy national energy technology laboratory January 8, 2001 (2001).

    Google Scholar 

  21. F. Baratto, U.M. Diwekar, and D. Manca, Impacts assessment and trade-offs of fuel cell-based auxiliary power units Part I system performance and cost modelling, Journal of Power Sources 139, 205-213 (2005).

    Article  Google Scholar 

  22. P. Lamp, J. Tachtler, O. Finkenwirth, S. Mukerjee, and S. Shaffer, Development of an auxiliary power unit with solid oxide fuel cells for automotive applications, Fuel Cells 3 (3), 146-152 (2003).

    Article  Google Scholar 

  23. J. Zizelman, S. Shaffer, and S. Mukerjee, Solid oxide fuel cell auxiliary power unit: a development update, Fuel Cell Power for Transportation 2002, Detroit, MI, Society for Automotive Engineers Technical Paper Series, 2002.

    Google Scholar 

  24. P.F. van den Oosterkamp, Critical issues in heat transfer for fuel cell systems, Energy Conversion and Management 47 (20), 3552-3561 (2006).

    Article  Google Scholar 

  25. Tomazˇ Katrasˇnik, Hybridization of powertrain and downsizing of IC engine - A way to reduce fuel consumption and pollutant emissions - Part 1, Energy Conversion and Management 48, 1411-1423 (2007).

    Article  Google Scholar 

  26. Stephanie L. Hamilton, Project Title: Micro Turbine Generator Program, Southern California Edison, Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000.

    Google Scholar 

  27. Well-to-Wheel Energy Use and Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems, General Motor, Argonne National Laboratory, Exxon, Shell, 2001.

    Google Scholar 

  28. T. Aicher, B. Lenz, F. Gschnell, U. Groos, F. Federici, and L. Caprile, Fuel processors for fuel cell APU applications. Journal of Power Sources 154, 503-508 (2006).

    Article  Google Scholar 

  29. E. Varkarakia, N. Lymberopoulosa, E. Zouliasa, D. Guichardotb, and G. Polic, Hydrogen-based uninterruptible power supply. International Journal of Hydrogen Energy 32, 1589-1596 (2007).

    Article  Google Scholar 

  30. A.D. Hawkes and P. Aguiar, B. Croxford, M.A. Leach, C.S. Adjiman, N.P. Brandon, Solid oxide fuel cell micro combined heat and power system operating strategy: options for provision of residential space and water heating. Journal of Power Sources 164, 260-271 (2007).

    Article  Google Scholar 

  31. N.M. Sammes and R. Boersma, Small-scale fuel cells for residential applications. Journal of Power Sources 86, 98-110 (2000).

    Article  Google Scholar 

  32. http://www.homegeneratorsystems.com/products/intelligen/15kw/index.cfm#feets.

  33. T. Susai, A. Kawakami, A. Hamada, Y. Miyake, and Y. Azegami, Development of a 1 kW polymer electrolyte fuel cell power source. Journal of Power Sources 92, 131-138 (2002).

    Article  Google Scholar 

  34. http://www.fuelcellmarkets.com/european_fuel_Cell/1,1,2994.html

  35. Chenggang Xie, Joseph Bostaph, and Jeanne Pavio, Development of a 2 W direct methanol fuel cell power source. Journal of Power Sources 136, 55-65 (2004).

    Article  Google Scholar 

  36. T. Sack and T. Matty, Li-ion battery technology for compact high power sources 96, 47-51 (2001).

    Google Scholar 

  37. S. Veyo, Westinghouse SOFC Field Unit Status, Westinghouse Science & Technology Center, 2004.

    Google Scholar 

  38. Y. Yoshida, N. Hisatome, and K. Takanobu, Development of SOFC for Products, Mitsubishi Heavy Industries, Ltd., Technical Review Vol. 40 No. 4 (Aug. 2003).

    Google Scholar 

  39. ACUMENTRICS 5000 POWER SYSTEM http://www.fuelcellmarkets.com/ article_ default_view.fcm?articleid=7195&subsite=425.

  40. Julian Dinsdale, Karl Föger, Raj Ratnaraj, Jonathan Love, and Alison Washusen Ceramic Fuel Cells Limited (CFCL), COMMERCIALISATION OF CFCL’S ALLCERAMIC STACK TECHNOLOGY Paper presented at the Fuel Cell Seminar, Miami, November 2003.

    Google Scholar 

  41. Cummins Power Generation 10kWe SOFC Power System Commercialization Program March 22, 2002.

    Google Scholar 

  42. Markus Jenne, Demonstration Project-Sulzer Hexis SOFC System for Biogas (Fermentation Gas) Operation, ESF Workshop January 29-30th, 2003.

    Google Scholar 

  43. Steven Shaffer, Update on Delphi’s Development of a Solid Oxide Fuel Cell Power System, Honolulu, Hawaii, 2006 Fuel Cell Seminar, 2006.

    Google Scholar 

  44. Mesoscopic Devices, MesoGen™ 250 W military SOFC battery charger, 2005.

    Google Scholar 

  45. Aaron Crumm, Portable Fuel Cell Systems-Solid Oxide Fuel Cells, Adaptive Materials, Inc., 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Zhou, X.Y., Pramuanjaroenkij, A., Kakaç, S. (2008). A Review on Miniaturization of Solid Oxide Fuel Cell Power Sources-I: State-of-The-Art Systems. In: Kakaç, S., Pramuanjaroenkij, A., Vasiliev, L. (eds) Mini-Micro Fuel Cells. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8295-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8295-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8293-1

  • Online ISBN: 978-1-4020-8295-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics