Catalyst Degradation Mechanisms in PEM and Direct Methanol Fuel Cells

  • H. A. Gasteiger
  • W. Gu
  • B. Litteer
  • R. Makharia
  • B. Brady
  • M. Budinski
  • E. Thompson
  • F. T. Wagner
  • S. G. Yan
  • P. T. Yu
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

While much attention has been given to optimizing initial fuel cell performance, only recent research has focused on the various materials degradation mechanisms observed over the life-time of fuel cells under real-life operating conditions. This presentation will focus on fuel cell durability constraints produced by platinum sintering/dissolution, carbon-support oxidation, and membrane chemical and mechanical degradations.

Over the past 10 years, extensive R&D efforts were directed towards optimizing catalysts, membranes, and gas diffusion layers (GDL) as well as combining them into improved membrane electrode assemblies (MEAs), leading to significant improvements in initial performance of H2/air-fed proton exchange membrane fuel cells (PEMFCs) and methanol/air-fed direct methanol fuel cells (DMFCs). While the required performance targets have not yet been met, current PEMFC and DMFC performance are close to meeting entry-level applications and many prototypes have been developed for field testing. This partially shifted the R&D focus from performance optimization to more closely examining materials degradation phenomena which limit fuel cell durability under real-life testing conditions.

The predominant degradation mechanisms are sintering/dissolution of platinum-based cathode catalysts under highly dynamic operating conditions, dissolution of ruthenium from DMFC anode catalysts, the oxidation of carbon-supports of the cathode catalyst during fuel cell startup and shutdown, and the formation of pinholes in proton exchange membranes if subjected to extensive local relative humidity cycling. These various mechanisms and their impact of fuel cell durability will be discussed in the following.

Keywords

Porosity Platinum Ruthenium Perfluoro Sulfonicacid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, and F.T. Wagner, Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs, Appl. Catal. B 56, 9 (2005).CrossRefGoogle Scholar
  2. 2.
    P. Piela and P. Zelenay, Researchers Redefine The DMFC Roadmap, The Fuel Cell Review Aug./Sept., 17 (2004).Google Scholar
  3. 3.
    J. Müller, G. Frank, K. Colbow, and D. Wilkinson, “Transport/Kinetic Limitations and Efficiency Losses”, in: Handbook of Fuel Cells: Fundamentals, Technology, and Applications, edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (Wiley, Chichester, UK, 2003), vol. 3, pp. 847-855.Google Scholar
  4. 4.
    P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S.S. Kocha, and H.A. Gasteiger, Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells - A Mechanistic Investigation, J. Electrochem. Soc. 152, A2256 (2005).CrossRefGoogle Scholar
  5. 5.
    P. Piela, C. Eickes, E. Brosha, F. Garzon, and P. Zelenay, Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode, J. Electrochem. Soc. 151, A2053 (2004).CrossRefGoogle Scholar
  6. 6.
    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, and T.D. Jarvi,  A Reverse-Current Decay Mechanism for Fuel Cells, Electrochem. Solid State Lett. 8, A273 (2005).CrossRefGoogle Scholar
  7. 7.
    M.F. Mathias, R. Makharia, H.A. Gasteiger, J.J. Conley, T.J. Fuller, C.J. Gittleman, S.S. Kocha, D.P. Miller, C.K. Mittelsteadt, T. Xie, S.G. Yan, and P.T. Yu, Two Fuel Cell Cars In Every Garage? Interface (The Electrochemical Society, 2005), 14, pp. 24-35.Google Scholar
  8. 8.
    T. Tada, “High Dispersion Catalysts Including Novel Carbon-Supports”, in: Handbook of Fuel Cell, edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (Wiley, Chichester, UK, 2003), vol. 3, pp. 481-488.Google Scholar
  9. 9.
    H.A. Gasteiger, Y. Liu, D. Baker, and W. Gu, “Kinetics and Kinetically Limited Performance in PEMFCs and DEMFCs with State-of-the-Art Catalysts”, in this book.Google Scholar
  10. 10.
    K. Kinoshita, J.T. Lundquist, and P. Stonehart, Potential Cycling Effects on Platinum Electrocatalyst Surfaces, J. Electroanal. Chem. 48, 157 (1973).CrossRefGoogle Scholar
  11. 11.
    P. Yu, M. Pemberton, and P. Plasse, Ptco/C Cathode Catalyst for Improved Durability In PEMFCs, J. Power Sources 144, 11 (2005).CrossRefGoogle Scholar
  12. 12.
    F.T. Wagner, H.A. Gasteiger, R. Makharia, K.C. Neyerlin, E.L. Thompson, and S.G. Yan, Catalyst Development Needs and Pathways for Automotive PEM Fuel Cells, ECS Trans. 3 (1), 19 (2006).CrossRefGoogle Scholar
  13. 13.
    J. Aragane, T. Murahashi, and T. Odaka, Change of Pt Distribution in the Active Components of Phosphoric Acid Fuel Cell, J. Electrochem. Soc. 135, 844 (1988).CrossRefGoogle Scholar
  14. 14.
    J. Aragane, H. Urushibata, and T. Murahashi, Effect of Operational Potential On Performance Decay Rate in a Phosphoric Acid Fuel Cell, J. Appl. Electrochem. 26, 147 (1996).CrossRefGoogle Scholar
  15. 15.
    M. Uchimura and S.S. Kocha, The Impact of Cycle Profile on PEMFC Durability, ECS Trans. 11 (1), 1215 (2007).CrossRefGoogle Scholar
  16. 16.
    S. Mitsushima, Y. Koizumi, S. Uzuka, and K. Ota, Dissolution Mechanism of Platinum in Acidic Media, ECS Trans. 11 (1), 1195 (2007).CrossRefGoogle Scholar
  17. 17.
    P. Yu, W. Gu, R. Makharia, F.T. Wagner, and H.A. Gasteiger, The Impact of Carbon Stability on PEM Fuel Cell Startup and Shutdown Voltage Degradation, ECS Trans. 3 (1), 797 (2006).Google Scholar
  18. 18.
    H.A. Gasteiger, W. Gu, R. Makharia, M.F. Mathias, and B. Sompalli, “Beginning-of Life MEA Performance - Efficiency Loss Contributions”, in: Handbook of Fuel Cells, edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (Wiley, Chichester, UK, 2003)., vol. 3, pp. 593-610.Google Scholar
  19. 19.
    M.L. Perry, T.W. Patterson, and C. Reiser, Systems Strategies to Mitigate Carbon Corrosion in Fuel Cells, ECS Trans. 3 (1), 783 (2006).CrossRefGoogle Scholar
  20. 20.
    W. Liu and S. Cleghorn, Effect of Relative Humidity on Membrane Durability in PEM Fuel Cells, ECS Trans. 1 (8), 263 (2006).CrossRefGoogle Scholar
  21. 21.
    E. Endoh, Highly Durable MEA for PEMFC Under High Temperature and Low Humidity Conditions, ECS Trans. 3 (1), 9 (2006).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • H. A. Gasteiger
    • 1
    • 2
  • W. Gu
    • 1
    • 2
  • B. Litteer
    • 1
    • 2
  • R. Makharia
    • 1
    • 2
  • B. Brady
    • 1
    • 2
  • M. Budinski
    • 1
    • 2
  • E. Thompson
    • 1
    • 2
  • F. T. Wagner
    • 1
    • 2
  • S. G. Yan
    • 1
    • 2
  • P. T. Yu
    • 1
    • 2
  1. 1.Acta S.p.A.CrespinaItaly
  2. 2.Fuel Cell ActivitiesGeneral Motors CorporationHoneoye FallsUSA

Personalised recommendations