Skip to main content

Kinetics and Kinetically Limited Performance in PEMFCs and DMFCs with State-of-the-Art Catalysts

  • Conference paper
Mini-Micro Fuel Cells

Over the past 10 years, extensive R&D efforts to optimize H2/air-fed proton exchange membrane fuel cell (PEMFC) performance resulted in power densities near 1 W/cm2 at ≈0.6 V and much reduced MEA (membrane electrode assembly) platinum loadings of ≈0.45 mgPt/cm2 MEA. These accomplishments were largely driven by the implementation of thin membranes (≈25 μm), highly conductive bipolar plate materials/coatings, and empirical improvements in electrode design. In order to close the remaining performance gap for automotive applications, it is critical to quantify the various voltage losses in state-of-the-art H2/air MEAs, as this will enable more targeted future MEA materials and design development.

Similarly, much progress has been made in materials and engineering design of direct methanol fuel cells (DMFCs), and it is instrumental to deconvolute materials related losses (catalyst activity and ohmic resistances) from mass-transport related losses. This analysis will again enable the determination of performance gains which can be made by either MEA materials or MEA design improvements.

Thus, this paper will review the activity of currently known anode and cathode catalysts in H2/air PEMFCs and DMFCS. Using these well-known kinetics, an analysis of the various voltage loss contributions will be conducted in order to determine the impact of mass transport losses and proton conduction losses, with the hope of being able to provide a clear focus on future development needs with regards to materials development and MEA engineering optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Gasteiger, S.S. Kocha, B. Sompalli, and F.T. Wagner, Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for Pemfcs, Appl. Catal. B 56, 9 (2005).

    Article  Google Scholar 

  2. P. Piela and P. Zelenay, Researchers Redefine The DMFC Roadmap, The Fuel Cell Review Aug./Sept., 17 (2004).

    Google Scholar 

  3. H.A. Gasteiger, W. Gu, R. Makharia, M.F. Mathias, and B. Sompalli, ‘Beginning-of-Life MEA performance-efficiency loss contributions’, in: Handbook of Fuel Cells: Fundamentals, Technology, and Applications, edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (Wiley, Chichester, 2003), vol. 3, pp. 593-610.

    Google Scholar 

  4. K.C. Neyerlin, W. Gu, J. Jorne, A. Clark (jr.), and H.A. Gasteiger, Cathode Catalyst Utilization for the ORR in a PEMFC Analytical Model and Experimental Validation, J. Electrochem. Soc. 154, B279 (2007).

    Article  Google Scholar 

  5. Y. Liu, M. Murphy, D. Baker, W. Gu, C. Ji, J. Jorne, and H.A. Gasteiger, Determination of Electrode Sheet Resistance in Cathode Catalyst Layer by AC Impedance, ECS Trans. 11 (1), 473 (2007).

    Article  Google Scholar 

  6. K.C. Neyerlin, W. Gu, J. Jorne, and H.A. Gasteiger, Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions, J. Electrochem. Soc. 154, B631 (2007).

    Article  Google Scholar 

  7. K.C. Neyerlin, W. Gu, J. Jorne, and H.A. Gasteiger, Determination of Catalyst Unique Parameters for the Oxygen Reduction Reaction in a PEMFC, J. Electrochem. Soc. 153, A1955 (2006).

    Article  Google Scholar 

  8. J.S. Newman, Electrochemical Systems (Prentice Hall, Englewood Cliffs, NJ, 1991).

    Google Scholar 

  9. F.T. Wagner, H.A. Gasteiger, R. Makharia, K.C. Neyerlin, E.L. Thompson, and S.G. Yan, Catalyst Development Needs and Pathways for Automotive PEM Fuel Cells, ECS Trans. 3 (1), 19 (2006).

    Article  Google Scholar 

  10. D. Thompsett, ‘Pt Alloys as Oxygen Reduction Catalysts’, in: Handbook of Fuel Cell, edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (Wiley, NY, 2003), vol. 3, pp. 467-480.

    Google Scholar 

  11. V.R. Stamenković, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, and N.M. Marković, Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability, Science 315, 493 (2007).

    Article  Google Scholar 

  12. R. Srivastava, P. Mani, N. Hahn, and P. Strasser, Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt-Cu-Co Nanoparticles, Angew. Chem. Int. Ed. 46, 1 (2007).

    Article  Google Scholar 

  13. C.C. Boyer, R.G. Anthony, and A. J. Appleby, Design equations for optimized PEM fuel cell electrodes, J. App. Electrochem. 30, 777 (2000).

    Article  Google Scholar 

  14. G. Li and P.G. Pickup, Ionic Conductivity of PEMFC Electrodes Effect of Nafion Loading, J. Electrochem. Soc. 150, C745 (2003).

    Article  Google Scholar 

  15. E.L. Thompson, W. Gu, J. Jorne, and H.A. Gasteiger, Oxygen Reduction Reaction Kinetics in Subfreezing PEM Fuel Cells, J. Electrochem. Soc. 154 (8), B783-B792 (2007).

    Article  Google Scholar 

  16. T.E. Springer, T.A. Zawodzinski, and S. Gottesfeld, Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. 138, 2334 (1991).

    Article  Google Scholar 

  17. X. Ye and C.Y. Wang, Measurement of Water Transport Properties Through Membrane-Electrode Assemblies, I. Membranes, J. Electrochem. Soc. 154, B676 (2007).

    Article  Google Scholar 

  18. D. Baker, C. Wieser, K.C. Neyerlin, and M.W. Murphy, The Use of Limiting Current to Determine Transport Resistance in PEM Fuel Cells, ECS Trans. 3 (1), 989 (2006).

    Article  Google Scholar 

  19. M.P. Hogarth and T.R. Ralph, Catalysis for Low Temperature Fuel Cells, Part 111: Challenges for the Direct Methanol Fuel Cell, Platinum Metals Rev. 46, 146 (2002).

    Google Scholar 

  20. S.C. Thomas, X. Ren, S. Gottesfeld, and P. Zelenay, Direct Methanol Fuel Cells: Progress in Cell Performance and Cathode Research, Electrochim. Acta 47, 3741 (2002).

    Article  Google Scholar 

  21. R. Dillon, S. Srinivasan, A.S. Aricò, and V. Antonucci, International Activities in DMFC R&D: Status of Technologies and Potential Applications, J. Power Sources 127, 112 (2004).

    Article  Google Scholar 

  22. M. Baldauf and W. Preidel, Status of the Development of a Direct Methanol Fuel Cell, J. Power Sources 84, 161 (1999).

    Article  Google Scholar 

  23. H.A. Gasteiger and J. Garche, ‘Fuel Cells’, in: Handbook of Heterogeneous Catalysis (2nd edn), edited by G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp (Wiley-VCH, Weinheim, Germany, 2008), in press.

    Google Scholar 

  24. J. Nordlund and G. Lindbergh, Temperature-Dependent Kinetics of the Anode in the DMFC, J. Electrochem. Soc. 151, A1357 (2004).

    Article  Google Scholar 

  25. H.A. Gasteiger, N.M. Marković, P.N. Ross (Jr.), and E.J. Cairns, Temperature-Dependent Methanol Electro-Oxidation on Well-Characterized Pt-Ru Alloys, J. Electrochem. Soc. 141, 1795 (1994).

    Article  Google Scholar 

  26. S.S. Sandhu, R.O. Crowther, S.C. Krishnan, and J.P. Fellner, Direct Methanol Polymer Electrolyte Fuel Cell Modeling: Reversible Open-Circuit Voltage and Species Flux Equations, Electrochim. Acta 48, 2295 (2003).

    Google Scholar 

  27. M.F. Mathias, R. Makharia, H.A. Gasteiger, J.J. Conley, T.J. Fuller, C.J. Gittleman, S.S. Kocha, D.P. Miller, C.K. Mittelsteadt, T. Xie, S.G. Yan, and P.T. Yu, Two Fuel Cell Cars in Every Garage? Interface (The Electrochemical Society, 2005), 14, pp. 24-35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Gasteiger, H.A., Liu, Y., Baker, D., Gu, W. (2008). Kinetics and Kinetically Limited Performance in PEMFCs and DMFCs with State-of-the-Art Catalysts. In: Kakaç, S., Pramuanjaroenkij, A., Vasiliev, L. (eds) Mini-Micro Fuel Cells. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8295-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8295-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8293-1

  • Online ISBN: 978-1-4020-8295-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics