Nitrile Metabolizing Yeasts

  • Tek Chand Bhalla
  • Monica Sharma
  • Nitya Nand Sharma

Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3–6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing enzymes of yeasts.

Keywords

Nitrile yeast nitrilase nitrile hydratase-amidase Exophiala oligosperma Torulaopsis candida 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, Y. and Kato, Y. 1998. FEMS Microbiol. Lett. 158: 185–190.CrossRefGoogle Scholar
  2. Bandopadhyay, A.K., Nagasawa, T., Asano, Y., Fujishiro, K., Tani, Y. and Yamada, H. 1986. Appl.Environ. Microbiol. 51: 302–306.Google Scholar
  3. Banerjee, A., Sharma, R. and Banerjee, U.C. 2002. Appl. Microbiol. Biotechnol. 60: 33–44.CrossRefGoogle Scholar
  4. Bhalla, T.C., Miura, A., Wakamoto, A., Ohba, Y. and Furuhashi, K. 1992. Appl. Microbiol. Biotechnol. 37: 184–190.CrossRefGoogle Scholar
  5. Brewis, E.A., Walt, J.P., van der, and Prior,B.A. 1995. Syst. Appl. Microbiol. 18: 338–342.Google Scholar
  6. Chebrou, H., Bigey, F., Arnaud, A. and Galzy, P. 1996. Biochim. et Biophys. Acta 1298: 285–293.Google Scholar
  7. Chibata, I. 1978. Immobilized Enzyme. Kodansha Ltd, Halsted Press.Google Scholar
  8. Ciskanik, L.M., Wilczek, J.M. and Fallon, R.D. 1995. Appl. Environ. Microbiol. 61: 998–1003.Google Scholar
  9. Conn, E.E., 1981. In: Cyanide in Biology, (eds. B. Vennesland E.E., Conn C.J., Knowles J., Westley,F. Wissing), Academic Press, New York, pp. 183–196.Google Scholar
  10. Dhillon, J., Chhatre, S., Shanker, R. and Shivaraman, N. 1999. Can. J. Microbiol. 45: 811–815.CrossRefGoogle Scholar
  11. Dias, J.C.T., Rezende, R.P. and Linardi, V.R. 1996. In: LABS 2-Biodegradation and Biodeterioration in Latin America(eds Gaylarde C.C., Saccol de Sa E.L.) pp. 154–155.Google Scholar
  12. Dias, J.C.T., Rezende, R.P. and Linardi, V.R. 2000b. Braz. J. Microbiol. 31: 61–66.CrossRefGoogle Scholar
  13. Dias, J.C.T., Rezende, R.P. and Linardi, V.R. 2001a. Appl. Microbiol. Biotechnol. Alemanha 56: 757–761.CrossRefGoogle Scholar
  14. Dias, J.C.T., Rezende, R.P. and Linardi, V.R. 2001b. Braz. J. Microbiol. 32: 221–224.CrossRefGoogle Scholar
  15. Dias, J.C.T., Rezende, R.P., Rosa, C.A., Lachance, M.A. and Linardi, V.R. 2000a. Can. J. Microbiol. 46: 525–531.CrossRefGoogle Scholar
  16. Duffey, S.S. 1981.In: Cyanide, in Biology, (eds.B. Vennesland, E.E. Conn, Knowles, C.J. Westley,J. Wissing), Academic Press, New York, pp. 385–414.Google Scholar
  17. Evans, E.J., Batts, B.D., Cant, N.W. and Smith, J.W. 1985. Org. Geochem. 8: 367–374.CrossRefGoogle Scholar
  18. Fournand, D. and Arnaud, A. 2001. J. Appl. Microbiol. 91: 381–393.CrossRefGoogle Scholar
  19. Fukuda, Y., Harada, T. and Izumi, Y. 1973. J. Ferment. Technol. 51: 393–397.Google Scholar
  20. Gavagan, J.E., Dicosimo, R., Eisenberg, A., Fager, S.K., Folsom, P.W., Hann, E.C., Schneider, K.J.and Fallon, R.D. 1999. Appl. Microbiol. Biotechnol. 52: 654–659.CrossRefGoogle Scholar
  21. Gervais, T.R., Carta, G. and Gainer, J.L. 2003. Biotechnol. Prog. 19: 389–395.CrossRefGoogle Scholar
  22. Godfredsen, S.E., Ingvorsen K., Yde B., Anderson O. 1985. Biocatalysis in organic synthesis. Amsterdam: Elsevier.Google Scholar
  23. Goldlust, A. and Bohak, Z. 1989. Biotechnol. Appl. Biochem. 11: 581–601.Google Scholar
  24. Harper, D.B. 1977a. Biochem. J. 165: 309–319.Google Scholar
  25. Harper, D.B. 1977b. Biochem. J. 167: 685–692.Google Scholar
  26. Hashimoto, Y., Hosaka, H., Oinuma, K.I., Godam, M., Higashibata, H. and Kobayashi, M. 2005. J. Biol. Chem. 280: 8660–8667.CrossRefGoogle Scholar
  27. Hook, R.H. and Robinson, W.G. 1964. J. Biol. Chem. 239: 4263–4267.Google Scholar
  28. Hoyle, A., Bunch, A.W. and Knowles, C.J. 1998. Enz. Microb.Technol. 23: 475–482.CrossRefGoogle Scholar
  29. Johannsen, F.R., Levinskas, G.J., Berteau, P.E, and Rodwell, D.E. 1986. Fundam. Appl. Toxicol. 7: 33–40.CrossRefGoogle Scholar
  30. Kato, Y. and Asano, Y. 2006. Appl. Microbiol. Biotechnol. 70: 92–101.CrossRefGoogle Scholar
  31. Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S.G. and Asano, Y. 2000a. Biochemistry 39: 800–809.CrossRefGoogle Scholar
  32. Kato, Y., Ooi, R. and Asano, Y. 2000b. Appl. Environ. Microbiol. 6: 2290–2296.CrossRefGoogle Scholar
  33. Kato, Y., Ooi, R. and Asano, Y. 1998. Arch. Microbiol. 170: 85–90.CrossRefGoogle Scholar
  34. Kato, Y., Yoshida, S. and Asano, Y. 2005. FEMS Microbiol. Lett. 246: 243–249.CrossRefGoogle Scholar
  35. Kayser, M., Chen, G. and Stewart, J. 1999. Syn. Lett. 1: 153–158.Google Scholar
  36. Kobayashi, M. and Shimizu, S. 1994. FMES Microbiol. Lett. 120: 217–224.CrossRefGoogle Scholar
  37. Kobayashi, M., Nagasawa, T. and Yamada, H. 1989. Eur. J. Biochem. 182: 349–56.CrossRefGoogle Scholar
  38. Kobayashi, M., Yanaka, N., Nagasawa, T. and Yamada, H. 1990. Tetrahedron 46: 5587–5590. CrossRefGoogle Scholar
  39. Kurtzman, C.P. and Fell, J.W. 2006. In: The Yeast Handbook(eds. Rosa C.A., Peter G.) Springer-Verlag, Berlin, Herdelberg. pp. 11 –30.Google Scholar
  40. Legras, J.L., Chuzel, G., Arnaud, A. and Galzy, P. 1990. World J. Microbiol. Biotechnol. 6: 83–108.CrossRefGoogle Scholar
  41. Legras, J.L., Kaakeh, M.R., Arnaud, A, and Galzy, P. 1989. J. Gen. Appl. Microbiol. 35: 451–461.CrossRefGoogle Scholar
  42. Levy-schil, S., Soubrier, F., Crutz-le-coq, A.M., Faucher, D., Crouzet, J., Petre, D. 1995. Gene 161: 15–20.CrossRefGoogle Scholar
  43. Linardi, V.R., Dias, J.C.T. and Rosa, C.A. 1996. FEMS Microbiol. Lett. 144: 67–71.CrossRefGoogle Scholar
  44. Maier-Greiner, U.H., Obermainer-Skrobranek, B.M.M., Estermaier, L.M., Kammerloher, W.,Freund, C., Wulfing, C., Burkert, U.I., Matern, D.H., Breuer, M., Eulitz, M., Kufrevioglu, O.I.and Hartman, G.R. 1991. Proc. Natl. Acad. Sci. U.S.A. 88: 4260–4264.CrossRefGoogle Scholar
  45. Mauger, J., Nagasawa, T. and Yamada, H. 1990. Arch. Microbiol. 155: 1–6.CrossRefGoogle Scholar
  46. Mundy, B.P. and Liu, F.H.S. 1973. Can. J. Biochem. 51: 1440–1442.CrossRefGoogle Scholar
  47. Nagasawa, T., Mathew, C.D., Mauger, J. and Yamada, H. 1988. Appl. Microbiol. Biotechnol. 54: 1766–1769.Google Scholar
  48. Nagasawa, T., Nanba, H., Ryuno, K., Takeuchi, K., Yamada, H. 1987. Eur. J. Biochem. 162: 691–698.CrossRefGoogle Scholar
  49. Nagasawa, T., Shimizu, H. and Yamada, H. 1993. Appl. Microbiol. Biotechnol. 40: 189–195.CrossRefGoogle Scholar
  50. Nawaz,M.S., Franklin, W., Cerniglia, C.E. 1993. Can. J. Microbiol 39: 207–212.Google Scholar
  51. Nawaz, M.S., Khan, A.A., Bhattacharaya, D., Siitonen, P.H. and Cerniglia, C.E. 1996. J. Bacteriol. 178: 2397–2401.Google Scholar
  52. Nishise, H., Kurihara, M. and Tani, Y. 1987. Agric. Biol. Chem. 51: 2613–2616.Google Scholar
  53. Odaka, M., Fujii, K., Hoshino, M., Noguchi, T., Tsujimura, M., Nagashima, S., Yohda, M., Nagamune,T., Inoue, Y. and Endo, I. 1997. J. Am. Chem. Soc. 199: 3785–3791.CrossRefGoogle Scholar
  54. Oinuma, K.I., Ohta, T., Konishi, K., Hashimoto, Y., Higashibata, H., Kitagawa, T. and Kobayashi, M. 2003. FEBS Lett. 568: 44–48.CrossRefGoogle Scholar
  55. O'Reilly, C. and Turner, P.D. 2003. J. Appl. Microbiol. 95: 1161–1174.CrossRefGoogle Scholar
  56. Pollak, P., Romender, G., Hagedorn, F. and Gelbke, H.P. 1991. Ullmans encyclopedia of industrial chemistry. Weinheim: Wiley-VCH.Google Scholar
  57. Prasad, S., Sharma, D.R. and Bhalla, T.C. 2005. World J. Microbial. Biotechnol. 21: 1447–1450.CrossRefGoogle Scholar
  58. Prepechalov, I., Martínková, L., Stolz A., Ovesná, M., Bezouska, K., Kopecky, J. and Kren, V. 2001. Appl. Microbiol. Biotechnol. 55: 150–156.CrossRefGoogle Scholar
  59. Raj, J., Prasad, S. and Bhalla, T.C. 2006. Proc. Biochem. 41: 1359–1363.CrossRefGoogle Scholar
  60. Rezende, R.P., Dias, J.C.T., Linardi, V.R. and Carazza, F. 2004. Braz. J. Microbiol. 35: 117–120.CrossRefGoogle Scholar
  61. Rezende, R.P., Dias, J.C.T., Rosa, C.A., Caraza, F. and Linardi, V.R. 1999. J. Gen. Appl. Microbiol. 45: 185–192.CrossRefGoogle Scholar
  62. Rustler, S. and Stolz, A. 2007. Appl. Microbiol. Biotechnol. 75: 899–908.CrossRefGoogle Scholar
  63. Schuchmann, H.P. and Laidler, K.J. 1972. J. Air. Pollut. Control Ass. 22: 52–53.Google Scholar
  64. Sharma, N.N., Sharma, M., Kumar, H. and Bhalla, T.C. 2006. Proc. Biochem. 41: 2078–2081.CrossRefGoogle Scholar
  65. Šnajdrová, R., Kristova-Mylerova, V., Crestia, D., Nikolaou,K., Kuzma, M., Lemaire, M., Gallienne, E., Bolte, J., Bezouska, K., Kren, V. and Martinkova, L. 2004. J. Mol. Catal. B: Enzyme 29: 227–232.CrossRefGoogle Scholar
  66. Stahl, U. and Niederhaus, A. 2003. Genetically engineered food: methods and detection. Wiley-VCH Verlag GMBH & Co. KGaA.Google Scholar
  67. Strobel, G.A. 1966. J. Biol. Chem. 241: 2618–2621.Google Scholar
  68. Strobel, G.A. 1967. J. Biol. Chem. 242: 3265–3269.Google Scholar
  69. Takagi, M., Shirokaze, J.I., Oishi, K., Otsubom, K., Yamamoto, K., Yoshida, N. and Fujimatsu, I. 1994. J. Ferment. Bioeng. 78: 191–193.CrossRefGoogle Scholar
  70. Thakur, N. and Savitri Bhalla, T.C. 2004 Characterization of traditional fermented foods and beverages of Himachal Pradesh. Ind. J. Trad. Knowledge 3: 325–335.Google Scholar
  71. Thimann, K. and Mahadevan, S. 1964. Arch. Biochem. Biophys. 105: 133–141.CrossRefGoogle Scholar
  72. Trott, S., Bauer, R. and Knackmuss, H.J., Stolz A. 2001. Microbiology 147: 1815–1824.Google Scholar
  73. van der Walt, J.P., Brewis, E.A. and Prior, B.A. 1993. Syst. Appl. Microbiol. 16: 330–332.Google Scholar
  74. Wu, Z.L. and Li, Z.Y. 2003. J. Mol. Cat. B: Enz. 22: 105–112.CrossRefGoogle Scholar
  75. Yamada, H. 1992. Biochem. Eng. 2001: 14–17. Google Scholar
  76. Yamada, H. and Kobayashi, M. 1996. Biosci. Biotechnol. Biochem. 60: 1391 –1400.CrossRefGoogle Scholar
  77. Yamada, H., Ryuno, K., Nagasawa, T., Enomoto, K. and Watanabe, I. 1986. Agric. Biol. Chem. 50: 2859–2865.Google Scholar
  78. Yamamoto, K., Ueno, Y., Otsubo, K., Kawakami, K. and Komatsu, K. 1990. Appl. Environ. Microbiol. 56: 3125 –3129.Google Scholar
  79. Zhou, Z., Hashimoto, Y. and Kobayashi, M. 2005. Actinomycetologica 19: 18 –26.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Tek Chand Bhalla
    • 1
  • Monica Sharma
    • 1
  • Nitya Nand Sharma
    • 1
  1. 1.Department of BiotechnologyHimachal Pradesh UniversityIndia

Personalised recommendations