Skip to main content

Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

  • Chapter
Yeast Biotechnology: Diversity and Applications

No other sustainable option for production of transportation fuels can match ethanol made from lignocellulosic biomass with respect to its dramatic environmental, economic, strategic and infrastructure advantages. Substantial progress has been made in advancing biomass ethanol (bioethanol) production technology to the point that it now has commercial potential, and several firms are engaged in the demanding task of introducing first-of-a-kind technology into the marketplace to make bioethanol a reality in existing fuel-blending markets. In order to lower pollution India has a long-term goal to use biofuels (bioethanol and biodiesel). Ethanol may be used either in pure form, or as a blend in petrol in different proportions. Since the cost of raw materials, which can account up to 50 % of the total production cost, is one of the most significant factors affecting the economy of alcohol, nowadays efforts are more concentrated on using cheap and abundant raw materials. Several forms of biomass resources exist (starch or sugar crops, weeds, oil plants, agricultural, forestry and municipal wastes) but of all biomass cellulosic resources represent the most abundant global source. The lignocellulosic materials include agricultural residues, municipal solid wastes (MSW), pulp mill refuse, switchgrass and lawn, garden wastes. Lignocellulosic materials contain two types of polysaccharides, cellulose and hemicellulose, bound together by a third component lignin. The principal elements of the lignocellulosic research include: i) evaluation and characterization of the waste feedstock; ii) pretreatment including initial clean up or dewatering of the feedstock; and iii) development of effective direct conversion bioprocessing to generate ethanol as an end product. Pre-treatment of lignocellulosic materials is a step in which some of the hemicellulose dissolves in water, either as monomeric sugars or as oligomers and polymers. The cellulose cannot be enzymatically hydrolyzed to glucose without a physical and chemical pre-treatment. The pre-treatment processes normally applied on the different substrates are acidic hydrolysis, steam explosion and wet oxidation. A problem for most pretreatment methods is the generation of compounds that are inhibitory towards the fermenting microorganisms, primarily phenols. Degradation products that could have inhibitory action in later fermentation steps are avoided during pre-treatment by wet oxidation. Followed by pre treatment, hydrolysed with enzymes known as cellulases and hemicellulases, which hydrolyse cellulose and hemicellulose respectively. The production of bioethanol requires two steps, fermentation and distillation. Practically all ethanol fermentation is still based on Saccharomyces cerevisiae . The fermentation using thermotolerant yeasts has more advantageous in that they have faster fermentation rates, avoid the cooling costs, and decrease the over all fermentation costs, so that ethanol can be made available at cheaper rates. In addition they can be used for efficient simultaneous saccharification and fermentation of cellulose by cellulases because the temperature optimum of cellulase enzymes (about 40 ° C to 45 ° C) is close to the fermentation temperature of thermotolerant yeasts. Hence selection and improvement of thermotolerant yeasts for bioconversion of lignocellulosic substrates is very useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AFDC — Alternative Fuel Data Center 1997. Replacement Fuel & Alternative Fuel Vehicle Technical & Policy Analysis, An Overview and Summary. The United States Department of Energy.

    Google Scholar 

  • Adsul, M.G., Ghule, J.E., Shaikh, H., Singh, R., Bastawde, K.B., Gokhale, D.V. and Varma, A.J. 2005. Carbohydrate Polymers 62: 6–10.

    Article  CAS  Google Scholar 

  • Alex, B., Mikhail, B, Neil, G., John, K., Vera, M., Satoshi, K. and Jack, S. 2006. J. Biotechnol. 125: 198–209.

    Article  CAS  Google Scholar 

  • Ali, M., Nancy, D., Daniel, S., Yat-Chen, Ch., Christina, E. and Zhang, M. 2004. Biotech. Lett. 26: 321–325.

    Article  Google Scholar 

  • Alzate, C.A.C. and Sanchez, Toro, O.J. 2005. Energy 31: 2447–2459.

    Google Scholar 

  • Andersson, E., Harvey, S. and Berntsson, T. 2006. Energy 31: 1384–1394.

    Article  CAS  Google Scholar 

  • Arrizubieta, M.J. and Polaina, J. 2000. J. Biol. Chem. 275: 28843–28848.

    Article  CAS  Google Scholar 

  • Arthur, H. and Watson, K. 1976. J. Bacteriol. 128(1): 56–68.

    CAS  Google Scholar 

  • Awafo, U.A., Chahal, D.S., Simpson, B.K. and Le, G.B.B. 1996. Appl. Biochem. Biotechnol. 57: 461–470.

    Article  Google Scholar 

  • Balakshin, M.U., Capanema, E.A., Chen, Ch. and Gracz, H. 2003. J. Agric. Food Chem. 51: 6116–6127.

    Article  CAS  Google Scholar 

  • Ballesteros, I., Ballesteros, M., Carrasco, J., Martin, C. and Negro, M.J. 1992. Biomass Energy Ind. Environ., 6th E.C. Conference, pp. 531 –535.

    Google Scholar 

  • Ballesteros, I., Oliva, J.M., Carrasco, J.C. and Ballesteros, M. 1994. Appl. Biochem. Biotechnol. 45: 283–294.

    Article  Google Scholar 

  • Banat, I.M., Nigam, P. and Marchant, R. 1992.World J. Microbiol. Biotechnol. 8: 259–263.

    Article  CAS  Google Scholar 

  • Ben-Ghedalia, D., Shefet, G. and Dror, Y. 1983. J. Agric. Sci. 100: 393.

    Article  CAS  Google Scholar 

  • Bisaria, V.S. and Mishra, S. 1989. Crit. Rev. Biotechnol. 9(2): 61–103.

    Article  CAS  Google Scholar 

  • Bjerre, A.B., Olesen, A.B., Fernquist, P.A. and Schmidt, A.S. 1996. Biotechnol. Bioeng. 49: 568–577.

    Article  CAS  Google Scholar 

  • Blanchette, R.A. 1991. Ann. Rev. Phytopathol. 29: 381–398.

    Article  CAS  Google Scholar 

  • Bolling, C. and Suarez, N.R. 2001. ‘The Brazilian sugar industry: recent developments’, Market and Trade Economics Division, Economic Research Service, United States Department of Agriculture, Sugar and sweetener situation and outlook, September, SSS-232.

    Google Scholar 

  • Boominathan, K. Reddy C.A. 1992. Proc. Natl. Acad. Sci. U S A 89(12): 5586–5590.

    Article  CAS  Google Scholar 

  • Boopathy, R., Gurgas, M., Ullian, J. and Manning, J.F. 1998. Curr. Microbiol. 37(2): 127–131.

    Article  CAS  Google Scholar 

  • Bruinenberg, P.M., Dijken, J.P. and van Scheffers, W.A. 1983. J. Gen. Microbiol. 129: 965–971.

    CAS  Google Scholar 

  • Buchert, J. and Niemelä, K. 1991. J. Biotechnol. 18: 1–12.

    Article  CAS  Google Scholar 

  • Bullen, R.A., Arnot, T.C., Lakeman, J.B. and Walsh, F.C. 2006. Biosens. Bioelect. 21: 2015–2045.

    CAS  Google Scholar 

  • Bura, R., Mansfield, S.D., Saddler, J.N. and Bothast, R.J. 2002. Appl. Biochem. Biotechnol. 98: 59–72.

    Article  Google Scholar 

  • Butterworth, B. 2006. Refocus 7: 60–61.

    Article  Google Scholar 

  • Camacho, R.L. Perez-Guerra. N, and Roses R.P. 2003. E. J. Environ. Agric. Food Chem. 2: (5) 531–542.

    Google Scholar 

  • Chandel, A.K., Chan, E.S., Rudravaram, R., Lakshmi Narasu, Venkateswar Rao L. and Ravindra P. 2007a. Biotech. Mol. Biol. Rev. 2(1): 14–32.

    Google Scholar 

  • Chandel, A.K., Kapoor, R.K., Lakshmi Narasu, M., Viswadevan, V., Saravana Kumaran, S.G., Rudravaram, R., Venkateswar Rao, L., Tripathi, K.K., Lal, B. and Kuhad, R.C. 2007b. Int. J. Global Energy Issues (In Press).

    Google Scholar 

  • Chandel, A.K., Kapoor, R.K., Singh, A. and Kuhad, R.C. 2007c. Biores. Technol. 98: 1947–1950.

    Article  CAS  Google Scholar 

  • Cheung, S.W. and Anderson, B.C. 1997. Bioresour. Technol. 59; 81–96.

    Article  CAS  Google Scholar 

  • Chiang, C. and Knight. S.G. 1960. Nature 188: 79–80.

    Article  CAS  Google Scholar 

  • Church, J.A., and Wooldridge, D. 1981. Industrial and Engineering Chemistry Product Research and Development 20: 371–378.

    Article  CAS  Google Scholar 

  • Clark, T.A., and Mackie, K.L. 1984. J. Chem. Tech. Biotechnol. 34B: 101–110.

    CAS  Google Scholar 

  • Converse, A.O. and Optekar, J.D. 1993. Biotechnol. Bioeng. 42: 145–148.

    Article  CAS  Google Scholar 

  • Cowling, E.B. and Kirk, T.K. 1976. Biotech. Bioengineer. Symp. 6: 95–123.

    CAS  Google Scholar 

  • Crestini, C., Caponi, M.C, Argyropoulos, and D.S. Saladino, R. 2006. Bioorg. Medicin. Chem. 14: 5292–5302.

    Article  CAS  Google Scholar 

  • D'Amore, T., Celotto, G., Russel, I. and Stewart, G.G. 1989. Enzyme Microb. Technol. 11: 411–416.

    Article  Google Scholar 

  • Das, H. and Singh, S.K. 2004. Crit. Rev. Food Sci. Nutr. 44: 77–89.

    Article  Google Scholar 

  • Groot, M.J., De Van, D.E., Vondervoort, P.J., Vries, R.P., De, Vankuyk P.A. Ruijter G.J. and Visser J. 2003. Microbiol. 149: 1183–1191.

    Article  CAS  Google Scholar 

  • Vries, R.P. and de Visser, J. 2001. Microbiol. Mol. Biol. Rev. 65: 497–522.

    Article  Google Scholar 

  • Dewes, T. and Hunsche, E. 1998. Biol. Agricul. Horticul. 16: 251–258.

    Google Scholar 

  • Dien. B.S., Cotta M.A. Jeffries T.W. 2003. Appl. Microbiol. Biotechnol. 63: 258–266

    Article  CAS  Google Scholar 

  • Chan, A.W., Hoffman, R. and McInnis, B. 2004. Ecology and Society 9: 1–17.

    Google Scholar 

  • Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R.M. and Stein-miiller, H. 1987. Appl. Microbiol. Biotechnol. 26: 485–495.

    Article  CAS  Google Scholar 

  • Duff, S.J.B. and Murray, W.D. 1996. Biores. Technol. 55: 1–33.

    Article  CAS  Google Scholar 

  • Preez, J.C., and Du Walt, J.P. vander 1983. Biotechnol. Lett. 5: 357–362.

    Article  Google Scholar 

  • Dupreez, J.C., Bosch, M. and Prior, B.A. 1986. Enzyme Microbial Technol. 8: 360–364

    Article  CAS  Google Scholar 

  • Eidman, V.R. 2006. Choices 21(1): 15–19.

    Google Scholar 

  • Eklund, R. 1994. Doctoral thesis, Lund University, Lund.

    Google Scholar 

  • Ergun, M. and Mutlu, S.F. 2000. Bioresour. Technol. 73: 251–255.

    Article  CAS  Google Scholar 

  • Ericsson, K., Nilsson. and Lars, J. 2004. Biomass Bioenergy 26: 205–220.

    Article  Google Scholar 

  • Berndesa, G., Hoogwijkb, M. and vanden Broekc, R. 2003. Biomass Bioenergy. 25: 1–28.

    Article  Google Scholar 

  • Faith, W.L. 1945. Ind. Eng. Chem. 37: 9–11.

    Article  CAS  Google Scholar 

  • Fan, L.T., Gharpuray, M.M. and Lee, Y.H. 1987. Berlin: Springer-verlag. pp. 1–68.

    Google Scholar 

  • Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'Hare, M. and Kammen, D.M. 2006. Science 311: 506–508.

    Article  CAS  Google Scholar 

  • Galbe, M. and Zacchi, G. 2002. Appl. Microbiol. Biotechnol. 59: 618–628.

    Article  CAS  Google Scholar 

  • Gallagher, P., Schamel, G., Shapouri, H. and Brubaker, H. 2006. The International Competitiveness of the U.S. Corn-Ethanol Industry: A Comparison with Sugar-Ethanol Processing in Brazil, Agribusiness, Vol. 22, pp. 109 –134.

    Google Scholar 

  • Gamble, G.R. Snook, M.E. Henrikson, G. and Akin, D.E. 2000. Biotechnol. Lett. 22: 741–746.

    Article  CAS  Google Scholar 

  • Gan, Q., Allen, S.J. and Taylor, G. 2003 Process Biochem. 38: 1003–1018.

    Article  CAS  Google Scholar 

  • Gautam, M. and Martin, D.W. 2000. J. Power Energy 214: 165–182.

    Google Scholar 

  • Gera, R., Dhamija, S.S., Gera, T. and Singh, D. 1997. Biotechnol. Lett. 19: 189–193.

    Article  CAS  Google Scholar 

  • Gray, K.A., Zhao, L. and Emptage, M. 2006. Curr. Opin. Chem. Biol. 10: 141–146.

    Article  CAS  Google Scholar 

  • Gregg, D.J. and Saddler, J.N. 1996. Biotechnol. Bioeng. 51: 375–383.

    Article  CAS  Google Scholar 

  • Griffith, M., and Atlas, R.M. In: R.M. Atlan and J. Philp (eds.). Bioremediatians Applied Microbial Solutions for real-world environmental cleanup. ASM press, Washington, D.C. pp. 318–356.

    Google Scholar 

  • Grous, W.R., Converse, A.O. and Grethlein, H.E. 1986. Enzyme Microb. Technol 8: 274–280.

    Article  CAS  Google Scholar 

  • Guptha, R.A.S. 1992. Can. J. Microbiol. 38: 1233–1237.

    Google Scholar 

  • Gustafsson, C., Govindarajan, S. and Minshull, J. 2003. Curr. Opin. Biotechnol. 14: 366–370.

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal, B.F., Wahlbom, M., Gardonyi, W.H., Zyl, R.R., van Otero, C. and Jonsson, L. 2001. Adv. Biochem. Eng. Biotechnol. 73: 53–84.

    Google Scholar 

  • Haq, I., Khurshid, S., Ali, S., Ashraf, A., Qadeer, M.A. and Rajoka, M.I. 2001 World J. Microbiol. Biotechnol. 17: 35–37.

    Article  Google Scholar 

  • Harris, J.F, Baker, A.J. and Zerbe, J.R. 1984. Energy Biomass Wastes 8: 1151–1170.

    CAS  Google Scholar 

  • Heipieper, H.J. and Bont, J.A.M. de 1994. Appl. Environ. Microbiol. 60: 4440–4444.

    CAS  Google Scholar 

  • Heluane, H., Spencer, J.F.T., Spencer, D., Figueroa, L. and de Callieri, D.A.S. 1993. Appl. Microbiol. Biotechnol. 40: 98–100.

    Article  CAS  Google Scholar 

  • Herpoel, I., Jeller, H. and Fang, G. 2002. J. Pulp Paper Sci. 28: 67–71.

    CAS  Google Scholar 

  • Himmel, M.E., William, S.A., Baker, J.O., Nieves, R.A. and Steven, R.T. 1996. In: Handbook on Bioethanol: Production and Utilization. Wyman, C.E., Taylor and Francis, (ed.), Washington DC., pp. 143–161.

    Google Scholar 

  • Himmel, M.E., Adney, W.S., Baker, J.O., Elander, R., McMillan, J.D., Nieves, R.A., Sheehan, J.J., Thomas, S.R., Vinzant, T.B. and Zhang, M. 1997 In: Fuels and Chemicals from Biomass. B.D.

    Google Scholar 

  • Ho, N.W.Y., Chen, Z. and Brainard, A.P. 1998. Appl. Env. Microbiol. 64: 1852–1859.

    CAS  Google Scholar 

  • Holderby, J.M. and Moggio, W.A. 1960. J. Wat. Poll. Cont. Fed. 2: 171–181.

    Google Scholar 

  • Hood, E.E. 2004. ISBN 1 920842 2 –2 9.

    Google Scholar 

  • Ingram, L.O., Aldrich, H.C., Borges, A.C.C., Causey, T.B., Martinez, A. Morales F., Saleh, A., Unverwood, S.A., Yomano, L.P., York, S.W., Zaldivar, J. and Zhou, S.D. 1999. Biotechnol. Prog. 15: 855–866.

    Article  CAS  Google Scholar 

  • Iyer, P.V., Wu, Z.W., Kim, S.B. and Lee, Y.Y. 1996. Appl. Biochem. Biotechnol. 57/58: 121–132.

    Article  CAS  Google Scholar 

  • Jeffries, T.W. 1982. Biotechnol. Bioeng. Symp. 12: 103–110.

    CAS  Google Scholar 

  • John, J.A. 1969. In: Ethylene and Industrial Derivatives. Miller S.A. (ed.), Ernest Benn, London, pp. 690–801.

    Google Scholar 

  • Jones, R.P., Pammet, N. and Greenfield, P.F. 1981. Process Biochem. 16: 42–49.

    CAS  Google Scholar 

  • Jönsson, L.J., Palmqvist, E., Nilvebrant, N.O. and Hahn-Hägerdal, B. 1998. Appl. Microbiol. Biotechnol. 49: 691–697.

    Article  Google Scholar 

  • Kaar, W.E. and Holtzapple, M.T. 2000. Biomass Bioenergy 18: 189–199.

    Article  CAS  Google Scholar 

  • Kapoor, R.K., Chandel, A.K., Kuhar, S., Gupta, R. and Kuhad, R.C. 2006. In: Lignocellulose Biotechnology: Current and Future Prospects. Kuhad, R.C. Singh, A. (eds.), New Delhi, I.K. International, pp. 32–45.

    Google Scholar 

  • Karlsson, J., Siika-aho, M., Tenkanen, M. and Tjerneld, F. 2002. J. Biotechnol. 99: 63–78.

    Article  CAS  Google Scholar 

  • Katzen, R. and Monceaux, D.A. 1995. Appl. Biochem. Biotechnol. 51/52: 585–592.

    Article  CAS  Google Scholar 

  • Keating, J.D, Panganiban, C. and Mansfield, S.D. 2006. Biotechnol. Bioengi. 93: 1196–1206.

    Article  CAS  Google Scholar 

  • Kida, K., Kume, K., Morimura, S. and Sonoda, Y. 1992. J. Ferment. Bioeng.: 74169–173.

    Article  CAS  Google Scholar 

  • Kim, S., and Dale, BE. 2003. Biomass Bioenerg. 26: 361–375.

    Article  Google Scholar 

  • Kim, S. and Dale, B.E. 2004. Biomass Bioenerg. 26: 361–375.

    Article  Google Scholar 

  • Kim, K.H. and Hong, J. 2001. Bioresour. Technol. 77: 139–144.

    Article  CAS  Google Scholar 

  • Kordowska-Wiater, M. and Targonski, Z. 2001. Acta Microbiol. Pol. 50: 291–299.

    CAS  Google Scholar 

  • Kornaros, M. and Lyberatos, G. 2006. J. Hazard. Mater. 136: 95–102.

    Article  CAS  Google Scholar 

  • Krantz, M., Nordlander, B., Valadi, H., Johansson, M., Gustafsson, L. and Hohmann, S. 2004. Eukaryot. Cell. 3(6): 1381–1390.

    Article  CAS  Google Scholar 

  • Krishna, S.H., Reddy, T.J. and Chowdary, G.V. 2001. Bioresour. Technol. 77: 193–196.

    Article  CAS  Google Scholar 

  • Krishnan, M.S., Xia, Y., Ho, N.W.Y. and Tsao, G.T. 1997. In: Fuels and Chemicals from Biomass. Saha, B.D. and Woodward, J. (eds.), ACS Symp. Ser.

    Google Scholar 

  • Krogh, K.B.R., Mørkeberg, A., Jørgensen, H., Frisvad, J.C. and Olsson, L. 2004. Appl. Biochem. Biotechnol. 113–116: 389–401.

    Article  Google Scholar 

  • Kumakura, M. 1997. Process Biochem. 32: 555–559.

    Article  CAS  Google Scholar 

  • Larsson, C., Pahlman, I.L., Ansell, R., Rigoulet, M., Adler, L. and Gustafsson, L 1998. Yeast 14: 347–57.

    Article  CAS  Google Scholar 

  • Larsson, S., Reimann, A., Nilvebrant, N.O. and Jönsson, L.J. 1999. Appl. Biochem. Biotechnol. 77: 91–103.

    Article  Google Scholar 

  • Lawford, H.G. and Rousseau, J.D. 1993. Appl. Biochem. Biotechnol. 39–40: 301–322.

    Article  Google Scholar 

  • Lee, J. 1997. J. Biotechnol. 56: 1–24.

    Article  CAS  Google Scholar 

  • Leonard, R.H. and Hajny, G.J. 1945. Ind. Eng. Chem. 37: 390–395.

    Article  CAS  Google Scholar 

  • Leticia, P., Miguel, C., Humberto, G. and Jaime, A.J. 1997. Biotech. Lett. 19(1): 45–47.

    Article  Google Scholar 

  • Lloyd, T.A. and Wyman, C.E. 2005. Bioresour. Technol. 96: 1967–1977.

    Article  CAS  Google Scholar 

  • Lynd, L.R., Zyl, W.H., van McBride, J.E. and Laser, M. 2005. Curr. Opin. Biotechnol. 16: 577–583.

    Article  CAS  Google Scholar 

  • Lyons, T.P. 1981. All tech Technical Publications. Lexington, Kentuck.

    Google Scholar 

  • Mach, R.L. and Zeilinger, S. 2003. Appl. Microbiol. Biotechnol. 60: 515–522.

    CAS  Google Scholar 

  • MacKenzie, J.J. 2003. Energy Policy 31: 1183–1187.

    Article  Google Scholar 

  • Matthew, H., Ashley, O., Brian, K., Alisa, E. and Benjamin, J.S. 2005. Wine Making 101.

    Google Scholar 

  • McCarthy, J.K., Uzelac, A., Davis, D.F. and Eveleigh, D. E. 2004. J. Biol. Chem. 279: 11495–11502.

    Article  CAS  Google Scholar 

  • Millett, M.A., Baker, A.J. and Satter, L.D. 1976. Biotechnol. Bioeng. Symp. 6: 125–153.

    CAS  Google Scholar 

  • Miyamoto, K. 1997. Renewable biological systems for alternative sustainable energy production.

    Google Scholar 

  • Movagharnejad, K. 2005. Biochem. Eng. J. 24: 217–223

    Article  CAS  Google Scholar 

  • Mussato, S.I. and Roberto, I.C. 2001. Biotechnol. Lett. 23: 1681–1684.

    Article  Google Scholar 

  • Nelson, C.R. and Courter, M.L. 1954. Chem. Eng. Progr. 50: 526–532.

    CAS  Google Scholar 

  • Nigam, J.N. 2001. J. Appl. Microbiol. 90: 208–215.

    Article  CAS  Google Scholar 

  • Niitsu, T., Ito, M.M. and Inoue, H. 1992. J. Chem. Eng. Jpn. 25: 480–485.

    Article  CAS  Google Scholar 

  • Palmarola-Adrados, B., Galbe, and M. Zacchi, G. 2005. J. Chem. Technol. Biotechnol. 80(1): 85–91.

    Article  CAS  Google Scholar 

  • Palmqvist, E. and Hahn-Hagerdal, B. 2000. Bioresour. Technol. 74: 25–33.

    Article  CAS  Google Scholar 

  • Palmqvist, E., Grage, H., Meinander, N.Q. and Hahn-Hägerdal, B. 1999. Biotechnol. Bioeng. 63: 46–55.

    Article  CAS  Google Scholar 

  • Palmqvist, E. 1998. Ph.D. Thesis, Lund Univ., Sweden.

    Google Scholar 

  • Parajo, J.C., Dominguez, H. and Dominguez, J.M. 1996. Biotechnol. Lett. 18: 593–598.

    Article  CAS  Google Scholar 

  • Parajo, J.C., Dominguez, H., and Dominguez, J.M. 1997. Enzyme Microbial Technol. 21: 18–24.

    Article  CAS  Google Scholar 

  • Parekh, S. R., Parekh, R. S., and Wayman, M. 1987. Process Biochem. 22(3): 85–91.

    CAS  Google Scholar 

  • Parikka, M. 2004. Biomass Bioenergy 27: 613–620.

    Article  Google Scholar 

  • Pasha, C., Aruna, A., Maqsood, A.M., and Rao, L.V. 2005. J. Appl. Microbiol. 98: 318–323.

    Article  CAS  Google Scholar 

  • Pasha, C., Valli, N. and Rao, L.V. 2007a. Lett. Appl. Microbiol. 44(6): 666–672.

    Article  CAS  Google Scholar 

  • Pasha, C., Kuhad, R.C. and Rao, L.V. 2007b. J. Appl. Microbiol. (In press)

    Google Scholar 

  • Penner, M.H., and Liaw, E.T. 1994. In: Enzymatic Conversion of Biomass for Fuels Production. Himmel, M.E. Baker, J.O. and Overend, R.P. (eds.), pp. 363 –371.

    Google Scholar 

  • Philippidis, P.G. and Smith, K.T. 1995. Appl. Biochem. Biotechnol. 51/52: 117–123.

    Article  CAS  Google Scholar 

  • Picataggio, S.K. and Zhang, M. 1996. Wyman, C.H. (ed.), Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington DC, pp. 163–178.

    Google Scholar 

  • Pimentel, D. 2003 Nat. Resour. Res. 12(2): 127–134.

    Article  Google Scholar 

  • Purwadi, R., Niklasson, C. and Taherzadeh, M.J. 2004. J. Biotechnol. 114: 187–198.

    Article  CAS  Google Scholar 

  • Qureshi, N. and Manderson, G.J. 1995. Energy Sources 17: 241–265.

    Article  CAS  Google Scholar 

  • Ragauskas, A.J. Williams, C.K. Davison, B.H. Britovsek, G. Cairney J. Eckert, C.A. Frederick, Jr. W.J., Hallett J.P. Leak D.J. and Liotta C.L.2006. Science 311: 484–489.

    Article  CAS  Google Scholar 

  • Ranatunga, T.D., Jervis, J., Helm, R.F., McMillan, J.D. and Wooley, R.J. 2000. Enzyme. Microb. Technol. 27: 240–247.

    Article  CAS  Google Scholar 

  • Roukas, T. 1996. J. Eng. 27: 87–96.

    Google Scholar 

  • Roxas, A.S. and Anguila, N.P. 1971. Sugar News 47: 116–169.

    Google Scholar 

  • Saeman, J.F. 1945. Ind. Eng. Chem. 37: 43–52.

    Article  CAS  Google Scholar 

  • Sassner, P., Galbe, M. and Zacchi, G. 2006. Enzyme Microbial Technol. 39: 756–762.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, N.Y.

    Google Scholar 

  • Sharma, S. 2004, In: Workshop on Lantana Camara: Problems and Prospects (Volume of abstracts), organized by IIT, Delhi, HESCO, Dehradun and Department of Science and Technology (DST), Govt. of India at Dehradun Feb. 10 – 11.

    Google Scholar 

  • Sherrard, E.C. and Kressman, FW. 1945. Ind. Eng.Chem. 37: 5–8.

    Article  CAS  Google Scholar 

  • Shin, E.J, Nimlos, M.R and Evans, R.J. 2001. Fuel 80: 1697–1709.

    Article  CAS  Google Scholar 

  • Sivers V.M., Zacchi, G., Olsson, L. and Hahn-Hagerdal, B. 1994. Biotechnol. Prog. 10(5): 555–560.

    Article  Google Scholar 

  • Sluiter, A., Hames, B., Ruiz R., Scarlata, C., Sluiter, J. and Templeton, D. 2004. Determination of Structural Carbohydrates and Lignin in Biomass, NREL, Golden, CO.

    Google Scholar 

  • Solomon, B.O., Amigun, B., Betiku, E., Ojumu, T.V. and Layokun, S.K. 1999. JNSChE 16: 61–68.

    Google Scholar 

  • Spiridonov, N.A. and Wilson, D.B. 2000. Thermobifida fusca 182: 252–255.

    CAS  Google Scholar 

  • Sprenger, G.A. 1996. FEMS Microbiol. Lett. 145: 301–307.

    Article  CAS  Google Scholar 

  • Sridhar, M., Kiran Sree, N. and Venkateswar Rao, L. 2002. Bioresour. Technol. 83: 199–202.

    Article  CAS  Google Scholar 

  • Subramanian, K.A., Singal, S.K., Saxena, M. and Singhal, S. 2005. Biomass Bioenergy 29: 65–72.

    Article  Google Scholar 

  • Sun, Y. and Cheng, J. 2002. Bioresour. Technol. 83: 1–11.

    Article  CAS  Google Scholar 

  • Suurnakki, A.M., Tenkanen, M-L., Niku-Paavola, L. and Viikari, M. 2000. Cellulose 7: 189–209.

    Article  CAS  Google Scholar 

  • Swings, J. and DeLey, J. 1977. Bacteriologl. Rev. 41: 1–46.

    CAS  Google Scholar 

  • Szczodrak, J. and Targonski, Z. 1989. Acta Bitechnol. 9(6): 555–564.

    Article  CAS  Google Scholar 

  • Taherzadeh, M.J., Niklasson, C., Gustafsson, L. and Liden, G. 1998. Bioenergy 2: 872–880.

    Google Scholar 

  • Taherjadeh, M.1999. Ph.D. Thesis. Lund University, Lund, Sweden.

    Google Scholar 

  • Takagi, A., Harashima, S. and Oshima, Y. 1983. Appl. Environ. Microbiol. 45: 1034–1038.

    CAS  Google Scholar 

  • Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E. and Hahn-Hägerdal, B. 1998. Appl. Biochem. Biotechnol. 70–72: 3–15.

    Article  Google Scholar 

  • Todorn, D. and Tsonka, V.D. 2002. J. Culture Collections 3:72–77

    Google Scholar 

  • Vallet, C., Said, R., Rabiller, C. and Martin, M.L. 1996. Bioorganic Chem. 24: 319–330.

    Article  CAS  Google Scholar 

  • Vazquez, M.J., Alonso, J.L., Domínguez, H. and Parajo, J.C. 2006. Indust Crops Prod. 24: 152–159.

    Article  CAS  Google Scholar 

  • Vidal, P.F. and Molinier, J. 1988 Biomass 16: 1–17.

    Article  CAS  Google Scholar 

  • Vladimir, V., Schantz, N.Z. and Schwarz, W.H. 2005. FEMS Microbiol. Lett. 249: 353–358.

    Article  CAS  Google Scholar 

  • Von Blottnitz, H. and Curran, M.A. 2006. J. Cleaner Prod. 34: 2654–2661.

    Google Scholar 

  • Vo n Lampe, B., Barthel, B., Coupland, S.E., Riecken, E.O. and Rosewicz, S. 2006. J. Pharmacol. Exp. Ther. 318: 933–938.

    Article  CAS  Google Scholar 

  • Waldner, R., Leisola, M.S.A. and Fiechter, A. 1988. Appl. Microbiol. Biotechnol. 29: 400–407.

    Article  CAS  Google Scholar 

  • Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bulow, L. and Hahn-Hägerdal, B. 1996. Appl. Environ. Microbiol. 62: 4648–4651.

    CAS  Google Scholar 

  • Wang, P.Y. and Schneider, H. 1980. Can. J. Microbiol. 26: 1165–11688.

    Article  CAS  Google Scholar 

  • Wang, P.Y. and Schneider, H. 1980. Can. J. Microbiol. 26: 1165–11688.

    Article  CAS  Google Scholar 

  • Wheeler, K., Janshekar, H. and Sakuma, Y. 1991. In: Chemical Economics Handbook. SRI International, USA.

    Google Scholar 

  • Williams, D. and Munnecke, D.M. 1981. Biotechnol. Bioeng. 23: 1813–1825.

    Article  CAS  Google Scholar 

  • Williams, P.R.D., Cushing, C.A. and Sheehan, P.J. 2003. Risk Anal. 23(5): 1085–1115.

    Article  Google Scholar 

  • Wingren, A., Galbe, M. and Zacchi, G. 2003. Biotechnol. Prog. 19: 1109–1117.

    Article  CAS  Google Scholar 

  • Wooley, R., Ruth, M., Sheehan, J. and Ibsen, K. 2001. NREL/TP-580 –26157.

    Google Scholar 

  • Wright, L. 2006. Biomass Bioenergy 30: 706–714.

    Article  Google Scholar 

  • Wu, J. and Ju, L.K. 1998. Biotechnol. Prog. 14(4): 649–652.

    Article  CAS  Google Scholar 

  • Wyman, C.E. (ed.) 1996. Handbook on Bioethanol: Production and Utilization. Taylor and Francis, Washington, DC, Chapter 1: 1–18.

    Google Scholar 

  • Wyman C.E., Dale B.E., Elander R.T., Holtzapple M., Ladisch M.R. LeeY.Y. 2005. Bioresour. Technol. 96: 1959–1966.

    Article  CAS  Google Scholar 

  • Xin, Z., Yimbo, Q. and Peiji, G. 1993. Enzyme and Microbial Technol. 15: 62–65.

    Article  Google Scholar 

  • Yoon, G.S., Lee, T.S., Kim, C., Seo, J.h. and Ryu, Y.W. 1996. J. Microbiol. Biotechnol. 6: 286–291.

    CAS  Google Scholar 

  • Yu, C. and Huimin, T. 2002. Carbohydrate Res. 337: 1291–1296.

    Article  Google Scholar 

  • Yu, S., Wayman, M. and Parekh, S.K. 1987. Biotechnol. Bioeng. 29: 1144–1150.

    Article  CAS  Google Scholar 

  • Yunqiao, P.U., Ziemer, C. and Ragauskas, A.J. 2006 Carbohydrate Res. 341: 591–597.

    Article  CAS  Google Scholar 

  • Zheng, S., Kates, M., Dubr, M.A. and McLean, D.D. 2006. Biomass Bioenergy 30: 267–272.

    Article  CAS  Google Scholar 

  • Zhao, J.S., Yang, Z.Y., Wang, M. and Lu, Y. 2004. J. Agric. Food Chem. 52: 7246–7250.

    Article  CAS  Google Scholar 

  • Zhao, J., Wang, M., Yang, Z. and Yang, Z. 2005. Enzyme Microbial Technol. 37: 246–253.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Pasha, C., Rao, L.V. (2009). Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates. In: Satyanarayana, T., Kunze, G. (eds) Yeast Biotechnology: Diversity and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8292-4_25

Download citation

Publish with us

Policies and ethics