Skip to main content

A Wide-Range Integrative Expression Vector (CoMed) System for Yeasts

  • Chapter
Yeast Biotechnology: Diversity and Applications

No single yeast-based platform exists which is optimal for every protein. It is advisable to assess several platform candidates in parallel for optimal expression characteristics in a given case. For this approach, a wide-range yeast vector has been established that can be targeted to the various yeast host strains. The vector is built up in a modular way. In its basic form, it contains conserved rDNA-derived segments for targeting. For heterologous gene expression control, it is equipped with a promoter that is functional in all yeast species tested so far. For selection, a range of dominant and auxotrophic selection markers can be employed. Examples are presented applying vector variants with dominant or auxotrophic selection markers to the comparative simultaneous integration and expression of single or multiple foreign genes in a range of yeast platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amuel, C., Gellissen, G., Hollenberg C.P. and Suckow M. 2000. Biotechnol. Bioprocess Eng. 5: 247–252.

    Article  CAS  Google Scholar 

  • Beggs, J.P., Guerineau, M. and Atkins, J.F. 1976. Mol. Gen. Genet. 17: 287–294.

    Article  Google Scholar 

  • Bergkamp, R.J., Kool, I.M., Geerse, R.H. and Planta, R.J. 1992. Curr. Genet. 21: 365–370.

    Article  CAS  Google Scholar 

  • Böer, E., Wartmann, T., Luther, B., Manteuffel, R., Bode, R., Gellissen, G. and Kunze, G. 2004a. Antonie van Leeuwenhoek 86: 121–134.

    Article  Google Scholar 

  • Böer, E., Wartmann, T., Schmidt, S., Bode, R., Gellissen, G. and Kunze, G. 2004b. Antonie van Leeuwenhoek 87: 233–243.

    Article  CAS  Google Scholar 

  • Böer, E., Mock, H.P., Bode, R., Gellissen, G. and Kunze, G. 2005. Yeast 22: 523–535.

    Article  CAS  Google Scholar 

  • Bretthauer, R.K. and Castellino, F.J. 1999. Biotechnol. Appl. Biochem. 30: 193–200.

    CAS  Google Scholar 

  • Bruinenberg, P.M. 1986. Antonie van Leeuwenhoek 52: 411–429.

    Article  CAS  Google Scholar 

  • Bui, D.M., Kunze, I., Förster, S., Wartmann, T., Horstmann, C., Manteuffel, R. and Kunze, G. 1996. Appl. Microbiol. Biotechnol. 44: 610–619.

    Article  CAS  Google Scholar 

  • Froman, B.E., Tait, R.C. and Rodriguez, R.L. 1984. Gene 31: 257–261.

    Article  CAS  Google Scholar 

  • Gellissen, G. 2000. Appl. Microbiol. Biotechnol. 54: 741–750.

    Article  CAS  Google Scholar 

  • Gellissen, G. 2002. Hansenula polymorpha - Biology and Applications. Weinheim, Wiley-VCH.

    Book  Google Scholar 

  • Gellissen, G., Müller, F., Sieber, H., Tieke, A., Jenzelewski, V., Degelmann, A. and Strasser A. 2002. In: Gellissen G. (Ed.) Hansenula polymorpha - Biology and Applications, Wiley-VCH, Weinheim, pp. 229–254.

    Chapter  Google Scholar 

  • Gilbert, S.C., Urk, H., van Greenfield, A.J., McAvoy, M.J., Denton, K.A., Coghlan, D., Jones, G.D. and Mead D.J. 1994. Yeast 10: 1569–1580.

    Article  CAS  Google Scholar 

  • Guengerich, L., Kang, H.A., Behle, B., Gellissen, G. and Suckow M. 2004. In: Kück U. (Ed.) The Mycota II - Genetics and Biotechnology, Springer Verlag, pp. 273 –287.

    Google Scholar 

  • Gullov, K. and Friis, J. 1985. Curr. Genet. 10: 21–27.

    Article  CAS  Google Scholar 

  • Heinisch, J. and Hollenberg, C.P. 1993. Yeasts. In: Biotechnology Vol 1 - Biological Fundamentals, 2nd edition, (Rehm H.J., Reed G., Pühler A. and Stadler P. Eds) VCH Verlagsgesellschaft, Weinheim, pp. 470–514.

    Google Scholar 

  • Jigami, Y. and Odani, T. 1999. Biochim. Biophys. Acta 1426: 335–345.

    CAS  Google Scholar 

  • Johnston, M., Hillier, L., Riles, L., Albermann, K., Andre, B., Ansorge, W. and Benes, V. 1997. Nature 387: 87–90.

    Article  CAS  Google Scholar 

  • Kang, H.A. and Gellissen, G. 2005. In: Gellissen G. (Ed.) Production of Recombinant Proteins — Novel Microbial and Eukaryotic Expression Systems, Wiley-VCH, Weinheim, pp. 111–142.

    Google Scholar 

  • Klabunde, J., Diesel, A., Waschk, D., Gellissen, G., Hollenberg, C.P. and Suckow, M. 2002. Appl. Microbiol. Biotechnol. 58: 797–805.

    Article  CAS  Google Scholar 

  • Klabunde, J., Kunze, G., Gellissen, G. and Hollenberg, C.P. 2003. FEMS Yeast Res. 4: 185–193.

    Article  CAS  Google Scholar 

  • Klabunde, J., Kunze, G., Gellissen, G. and Hollenberg C.P. 2005. In: Gellissen, G. (Ed) Production of Recombinant Proteins - Novel Microbial and Eukaryotic Expression Systems, Wiley-VCH, Weinheim, pp. 273–286.

    Google Scholar 

  • Dall, M.T., Le Nicaud, J.M. and Gaillardin, C. 1994. Curr. Genet. 26: 38–44.

    Article  Google Scholar 

  • Lopes, T.S., de Wijs, I.J., Steenhauer, S.I., Verbakel, J. and Planta, R.J. 1996. Yeast 12: 467–477.

    Article  CAS  Google Scholar 

  • Madzak, C., Nicaud, J.-M. and Gaillardin, C. 2005. In: Gellissen, G. (Ed.) Production of Recombinant Proteins - Novel Microbial and Eukaryotic Expression Systems, Wiley-VCH, Weinheim, pp. 163–189.

    Google Scholar 

  • Maleszka, R. and Clark-Walker, G.D. 1993. Yeast 9: 53–58.

    Article  CAS  Google Scholar 

  • Montesino, R., García, R., Quintero, O. and Cremata, J.A. 1998. Protein Exp. Pur. 14: 197–207.

    Article  CAS  Google Scholar 

  • Montesino, R., Nimtz, M., Quintero, O., García, R., Falcón, V. and Cremata, J.A. 1999. Glycobiology 9: 1037–1043.

    Article  CAS  Google Scholar 

  • Müller, S., Sandal, T., Kamp-Hansen, P. and Dalgoge, H. 1998. Yeast 14: 1267–1283.

    Article  Google Scholar 

  • Piontek, M., Hagedorn, J., Hollenberg, C.P., Gellissen, G. and Strasser, A.W.M. 1998. Appl. Microbiol. Biotechnol. 50: 331–338.

    Article  CAS  Google Scholar 

  • Raschke, W.C., Neiditsch, B.R., Hendricks, M. and Cregg, J.M. 1996. Gene 177: 163–187.

    Article  CAS  Google Scholar 

  • Romanos, M.A., Scorer, C.A. and Clare, J.J. 1992. Yeast 8: 423–488.

    Article  CAS  Google Scholar 

  • Rose, M., Grisafi, P. and Botstein, D. 1984. Gene 29: 113–124.

    Article  CAS  Google Scholar 

  • Rösel, H. and Kunze, G. 1996. Curr. Genet. 28: 360–366.

    Article  Google Scholar 

  • Rösel, H. and Kunze, G. 1998. Curr. Genet. 33: 157–163.

    Article  Google Scholar 

  • Ruetz, S. and Gros, P. 1994. J. Biol. Chem. 269: 12277–12284.

    CAS  Google Scholar 

  • Steinborn, G., Gellissen, G. and Kunze, G. 2005. FEMS Yeast Res. 5: 1047–1054.

    Article  CAS  Google Scholar 

  • Steinborn, G., Böer, E., Scholz, A., Tag, K., Kunze, G. and Gellissen, G. 2006. Microb. Cell Fact. 5: 33

    Article  CAS  Google Scholar 

  • Steinborn, G., Wartmann, T., Gellissen, G. and Kunze, G. 2007. J. Biotechnol. 127: 392–401.

    Article  CAS  Google Scholar 

  • Sudbery, P.E. 1996. Curr. Opin. Biotechnol. 7: 517–524.

    Article  CAS  Google Scholar 

  • Terentiev, Y., Breuer, U., Babel, W. and Kunze, G. 2004b. Appl. Microbiol. Biotechnol. 64: 376–381.

    Article  CAS  Google Scholar 

  • Terentiev, Y., Pico, A.H., Böer, E., Wartmann, T., Klabunde, J., Breuer, U., Babel, W., Suckow, M., Gellissen, G. and Kunze, G. 2004a. J Ind. Microbiol. Biotechnol. 31: 223–228.

    Article  CAS  Google Scholar 

  • Thill, G.P., Davis, G.R., Stillman, C., Holtz, G., Brierley, R., Engel, M., Buckholtz, R., Kenney, J., Provow, S., Vedvick, T. and Siegel, R.S. 1990. Proc. 6th Int. Symp. “Genetics on microorganisms” Societe Francaise de Microbiologie, Paris: pp. 477–490.

    Google Scholar 

  • Udem, S.A. and Warner, J.R. 1972. J. Mol. Biol. 65: 227–242.

    Article  CAS  Google Scholar 

  • Valenzuela, P., Medina, A., Rutter, W.J., Ammerer, G. and Hall, B.D. 1982. Nature 298: 347–350.

    Article  CAS  Google Scholar 

  • Vozza, L.A., Wittwer, L., Higgins, D.R., Purcell, T.J., Bergseid, M., Collins-Racie, L.A., LaVallie, E.R. and Hoeffler, J.P. 1996. Biotechnology (NY) 14: 77–81.

    Article  CAS  Google Scholar 

  • Warner, J.R., Kumar, A., Udem, S.A. and Wu, R.S. 1972. Biochem. J. 129: 29P–30P.

    CAS  Google Scholar 

  • Wartmann, T., Bellebna, C., Böer, E., Bartelsen, O., Gellissen, G. and Kunze, G. 2003b. Appl. Microbiol. Biotechnol. 62: 528–535.

    Article  CAS  Google Scholar 

  • Wartmann, T., Böer, E., Huarto-Pico, A., Sieber, H., Bartelsen, O., Gellissen, G. and Kunze, G. 2002b. FEMS Yeast Res. 2: 363–369.

    CAS  Google Scholar 

  • Wartmann, T., Stephan, U.W., Bube, I., Böer, E., Melzer, M., Manteuffel, R., Stoltenburg, R., Guengerich, L., Gellissen, G. and Kunze, G. 2002a. Yeast 19: 849–862.

    Article  CAS  Google Scholar 

  • Wartmann, T., Stoltenburg, R., Boer, E., Sieber, H., Bartelsen, O., Gellissen, G. and Kunze, G. 2003a. FEMS Yeast Res. 3: 223–232.

    Article  CAS  Google Scholar 

  • Waschk, D., Klabunde, J., Suckow, M. and Hollenberg, C.P. 2002. In: Gellissen G. (Ed.) Hansenula polymorpha - Biology and Applications, Wiley-VCH, Weinheim, pp. 95–104.

    Chapter  Google Scholar 

  • Wendland, J., Pohlmann, R., Dietrich, F., Steiner, S., Mohr, C. and Philippsen, P. 1999. Curr. Genet. 35: 618–625.

    Article  CAS  Google Scholar 

  • Wittekindt, N.E., Wurgler, F.E. and Sengstag, C. 1995. DNA Cell Biol. 14: 273–283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Steinborn, G., Kunze, G., Gellissen, G. (2009). A Wide-Range Integrative Expression Vector (CoMed) System for Yeasts. In: Satyanarayana, T., Kunze, G. (eds) Yeast Biotechnology: Diversity and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8292-4_17

Download citation

Publish with us

Policies and ethics