Skip to main content

Assimilatory Nitrate Reduction in Hansenula polymorpha

  • Chapter
Yeast Biotechnology: Diversity and Applications

In the last decade, the yeast Hansenula polymorpha (syn.: Pichia angusta) has become an excellent experimental model for genetic and molecular investigations of nitrate assimilation, a subject traditionally investigated in plants, filamentous fungi and bacteria. Among other advantages, H. polymorpha offers classical and molecular genetic tools, as well as the availability of genomic sequence data.

Assimilative nitrate metabolism in H. polymorpha has an enzymological layout that is similar to other fungal species, and undergoes nitrogen metabolite repression elicited by preferred nitrogen sources such as glutamine. Genes involved in nitrate assimilation are clustered and independently transcribed. The information that puzzles is the presence of two homologous, albeit different, transcriptional activators acting upon the nitrate cluster genes, as all other known fungal nitrate assimilatory pathways have only one activator of this family. Recent work enables a first outline of the interplay between these two activators to be depicted, and suggests that one of them plays a central role in chromatin remodelling within the cluster.

The information, which has recently emerged regarding complex post-translational down-regulatory mechanism acting upon the major nitrate transporter suggests that this protein plays a central role in the regulation of nitrate assimilation.

Nitrogen metabolite repression acting upon nitrate assimilative genes is also being investigated through the isolation and characterisation of H. polymorpha Nmr mutants. These studies have suggested that the repression mechanisms are mediated by several interacting factors in this organism, which are also believed to participate in nitrogen metabolite repression of other metabolic pathways. All these are involved in the utilisation of secondary nitrogen sources such as arginine, meth-ylamine, urea and asparagine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaar, Y.J., and Moore, M.M. 1998. Curr. Genet. 33: 206–215.

    Article  Google Scholar 

  • Arst, H.N., Jr., and Cove, D.J. 1973. Mol. Gen. Genet. 126: 111–141.

    Article  Google Scholar 

  • Ávila, J., González, C., Brito, N., Machín, F., and Pérez, M.D., and Siverio, J.M. 2002. Yeast 19: 537–544.

    Article  CAS  Google Scholar 

  • Ávila, J., González, C., Brito, N., and Siverio, J.M. 1998. J. Biochem. 335: 547–652.

    Google Scholar 

  • Ávila, J., Pérez, M.D., Brito, N., González, C., and Siverio, J.M. 1995. FEBS Lett. 366: 137–142.

    Article  Google Scholar 

  • Barnett, J.A., Payne, R.W., and Yarrow, D. 1984. Yeast: Characteristics and Identification, 2nd edn., Cambridge University Press, Cambridge.

    Google Scholar 

  • Berger, H., Pachlinger, R., Morozov, I., Goller, S., Narendja, F., Caddick, M. and Strauss, J. 2006. Mol. Microbiol. 59: 433–446.

    Article  CAS  Google Scholar 

  • Bernreiter, A., Ramon, A., Fernandez-Martinez, J., Berger, H., Araujo-Bazan, L., Espeso, E.A., Pachlinger, R., Gallmetzer, A., Anderl, I., Scazzocchio, C. and Strauss, J. 2007. Mol. Cell Biol. 27: 791–802.

    Article  CAS  Google Scholar 

  • Brito, N., Ávila, J., Pérez, M.D., González, C. and Siverio, J.M. 1996. J. Biochem. 317: 89–95.

    CAS  Google Scholar 

  • Burger, G., Strauss, J., Scazzocchio, C. and Lan,g B.F. 1991a. Mol. Cell Biol. 11: 5746–5755.

    CAS  Google Scholar 

  • Burger, G., Tilburn, J. and Scazzocchio, C. and 1991b. Mol. Cell. Biol. 11: 795–802.

    CAS  Google Scholar 

  • Caddick, M.X., Jones, M.G., van Tonder, J.M., Le Cordier, H., Narendja, F., Strauss, J., and Morozov I.Y. 2006. Mol. Microbiol. 62(2): 509–519.

    Article  CAS  Google Scholar 

  • Campbell, W.H. 1999. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277–303.

    Article  CAS  Google Scholar 

  • Campbell, W.H., and Kinhorn, J.R. 1990. J. Biochem. Sci. 15: 315–319.

    Article  CAS  Google Scholar 

  • Cooper, T.G. 1982. In: The molecular biology of the yeast Saccharomyces: Metabolism and gene expression (eds. Strathern, J.N. et al.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 39.

    Google Scholar 

  • Cooper, T.G. 2002. FEMS Microbiol. Rev. 3: 223–238.

    Article  Google Scholar 

  • Cooper, T.G. and Sumrada, R.A. 1983. J. Bacteriol. 155: 623–627.

    CAS  Google Scholar 

  • Feng, B., and Marzluf, G.A. 1996. Curr. Genet. 29: 537–548.

    Article  CAS  Google Scholar 

  • Feng, B. and Marzluf, G.A. 1998. Mol. Cell. Biol. 18: 3983–3989.

    CAS  Google Scholar 

  • Forde, B.G. 2000. Biochim. Biophys. Acta 1465: 219–235.

    Article  CAS  Google Scholar 

  • Fu, Y.H., Feng, B., Evans, S. and Marzluf, G.A. 1995. Mol. Microbiol. 15: 935–942.

    Article  CAS  Google Scholar 

  • Galván, A., Quesada, A. and Fernandez, E. 1996. J. Biol. Chem. 271: 2088–2092.

    Article  Google Scholar 

  • García-Lugo, P., González, C., Perdomo, G., Brito, N., Ávila, J., de la Rosa, J.M. and Siverio, J.M. 2000. Yeast 16: 1099–1105.

    Article  Google Scholar 

  • Guerrero, M.G., Vega, J.M. and Losada, M. 1981. Annu. Rev. Plant. Physiol. 32: 169–204.

    Article  CAS  Google Scholar 

  • Jargeat, P., Rekangalt, D., Verner, M.C., Gay, G., Debaud, J.C., Marmeisse, R. and Fraissinet- Tachet, L. 2003. Curr. Genet. 43(3): 199–205.

    CAS  Google Scholar 

  • Johnstone, I.L., McCabe, P.C., Greaves, P., Cole, G.E., Brow, M.A., Gurr, S.J., Unkles, E., Clutterbach, A.J., Kinghorn, J.R. and Innis, M. 1990. Gene 90: 181–192.

    Article  CAS  Google Scholar 

  • Kay, C.J., Solomonson, L.P. and Barber, M.J. 1990. Biochem. 29: 10823–10828.

    Article  CAS  Google Scholar 

  • Kitamoto, N., Kimura, T., Kito Y., Ohmiya, K. and Tsukagoshi, N. 1995. Biosci. Biotechnol. Biochem. 59: 1795–1797.

    Article  CAS  Google Scholar 

  • Machín, F., Medina, B., Navarro, F.J., Pérez, M.D., Veenhuis, M., Tejera P., Lorenzo H., Lancha, A. and Siverio, J.M. 2004. Yeast 21: 265–276.

    Article  CAS  Google Scholar 

  • Machín, F., Perdomo, G., Pérez, M.D., Brito, N. and Siverio, J.M. 2000. FEMS Microbiol. Lett. 194: 171–174.

    Article  Google Scholar 

  • Margelis, S., D'Souza, C., Small, A.J., Hynes, M.J., Adams, T.H. and Davis, M.A. 2001. J. Bacteriol. 183: 5825–5833.

    Article  Google Scholar 

  • Marzluf, G.A. 1997. Microbiol. Mol. Biol. Rev. 61: 17–32.

    CAS  Google Scholar 

  • Mihlan, M., Homann, V., Liu T.W. and Tudzynski, B. 2003. Mol. Microbiol. 47: 975–991.

    Article  CAS  Google Scholar 

  • Morozov, I.Y., Galbis Martinez, M., Jones, M.G. and Caddick, M.X. 2001. Mol. Microbiol. 42: 269–277.

    Article  CAS  Google Scholar 

  • Narendja, F., Goller, S.P., Wolschek, M. and Strauss, J. 2002. Mol. Microbiol. 44: 573–583.

    Article  CAS  Google Scholar 

  • Navarro, F.J., Machin, F., Martin, Y. and Siverio, J.M. 2006. J. Biol. Chem. 281: 13268–13274.

    Article  CAS  Google Scholar 

  • Navarro, F.J., Perdomo, G., Tejera, P., Medina, B., Machin, F., Guillen, R.M., Lancha, A. and Siverio, J.M. 2003. FEMS Yeast Res. 4: 149–155.

    Article  CAS  Google Scholar 

  • Navarro, M.T., Guerra, E., Fernández, E. and Galván, A. 2000. Plant Physiol. 122: 283–290.

    Article  CAS  Google Scholar 

  • Okamoto, P.M., Fu Y.-H. and Marzluf, G.A. 1991. Mol. Gen. Genet. 227: 213–223.

    Article  CAS  Google Scholar 

  • Pérez, M.D., González, C., Avila, J., Brito, N. and Siverio, J.M. 1997. Biochem. J. 321: 397–403.

    Google Scholar 

  • Pignocchi, C., Beardi, E.R. and Cox, B.S. 1998. Microbiol. 144: 2323–2330.

    CAS  Google Scholar 

  • Prodouz, K.N. and Garrett, R.H. 1981. J. Biol. Chem. 252: 896–909.

    Google Scholar 

  • Quesada, A., Galvan, A., Schnell, R.A. and Lefebvre, P.A., and Fernandez, E. 1993. Mol. Gen. Genet. 240: 387–394.

    CAS  Google Scholar 

  • Quesada, A., Gomez, I. and Fernandez, E. 1998. Planta 206: 259–265.

    Article  CAS  Google Scholar 

  • Rossi, B. 2005. Repressione catabolica e induzione della via del nitrato in H. polymorpha: mutanti nmr, Attivatori Yna, rimodellamento cromatinico. Doctoral thesis, Facolt à di Scienze Matematiche Fisiche e Naturali. Universit à Politecnica delle Marche, Ancona.

    Google Scholar 

  • Rossi, B., Manasse, S., Serrani, F. and Berardi, E. 2005. FEMS Yeast Res. 5: 1009–1017.

    CAS  Google Scholar 

  • Serrani, F., Berardi, E. 2005. FEMS Yeast Res. 5: 999–1007.

    Article  CAS  Google Scholar 

  • Serrani, F. Rossi, B. and Berardi, E. 2001. Curr. Genet. 40: 243–250.

    Article  CAS  Google Scholar 

  • Siegel, L. and Wilkerson, J. 1989. In: Molecular and genetic aspects of nitrate assimilation (eds. Wray, J. and Kinghorn, J.), Oxford Science Publication, Oxford, pp. 263-–283.

    Google Scholar 

  • Siverio, J.M. 2002. FEMS Microbiol. Rev. 26: 277–284.

    Article  CAS  Google Scholar 

  • Strauss, J., Muro-Pastor, M.I. and Scazzocchio, C. 1998. Mol. Cell. Biol. 18: 1339–1348.

    Google Scholar 

  • Unkles, S.E., Campbell, E.I., Punt, P.J., Hawker, K.L., Contreras, R., Hawkins, A.R., Van-den Hondel, C.A. and Kinghorn, J.R. 1992. Gene 111: 149–155.

    Article  CAS  Google Scholar 

  • Unkles, S.E., Hawker, K.L., Grieve, C., Campbell, E.I., Montague, P. and Kinghorn, J.R. 1991. Proc. Natl. Acad. Sci. USA 88: 204–208.

    Article  CAS  Google Scholar 

  • Unkles, S.E., Zhou, D., Siddiqi, M.Y., Kinghorn, J.R. and Glass, A.D.M. 2001. EMBO J. 20: 6246–6255.

    Article  CAS  Google Scholar 

  • Yuan, G.F., Fu, Y.H. and Marzluf, G.A. 1991. Mol. Cell. Biol. 11: 5735–5745.

    CAS  Google Scholar 

  • Wray, J.L. and Kinghorn, J.R. 1989. Molecular and genetic aspects of nitrate assimilation, Oxford Science Publications, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Rossi, B., Berardi, E. (2009). Assimilatory Nitrate Reduction in Hansenula polymorpha . In: Satyanarayana, T., Kunze, G. (eds) Yeast Biotechnology: Diversity and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8292-4_15

Download citation

Publish with us

Policies and ethics