Skip to main content

Glutathione, γ -glutamyl-cysteinyl-glycine, is the most abundant non-protein thiol found in almost all eukaryotic cells (and in some prokaryotes). The tripeptide, which is synthesized non-ribosomally by the consecutive action of two soluble enzymes, is needed for carrying out numerous functions in the cell, most important of which is the maintenance of the redox buffer. The cycle of glutathione biosynthesis and degradation forms part of the γ -glutamyl cycle in most organisms although the latter half of the pathway has not been demonstrated in yeasts. Our current understanding of how glutathione levels are controlled at different levels in the cell is described. Several different routes and processes have been attempted to increase commercial production of glutathione using both yeast and bacteria. In this article we discuss the history of glutathione production in yeast. The current bottlenecks for increased glutathione production are presented based on our current understanding of the regulation of glutathione homeostasis, and possible strategies for overcoming these limitations for further enhancing and improving glutathione production are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfafara, C.G., Kanda, A., Shioi, T., Shimizu, H., Shioya, S., and Suga, K. 1992. Appl. Microbiol. Biotechnol. 36: 538–540.

    Article  CAS  Google Scholar 

  • Alfafara, C.G., Miura, K., Shimizu, H., Shioya, S., Suga, K., and Suzuki, K. 1993. Biotechnol. Bioeng. 41: 493–501.

    Article  CAS  Google Scholar 

  • Amssoms, K., Oza, S.L., Augustyns, K., Yamani, A., Lambeir, A.M., Bal, G., Veken, P.V., Fairlamb, A.H., and Haemers, A. 2002a. Bioorg. Med. Chem. Lett. 12: 2703–2705.

    Article  CAS  Google Scholar 

  • Amssoms, K., Oza, S.L., Ravaschino, E., Yamani, A., Lambeir, A.M., Rajan, P., Bal, G., Rodriguez, J.B., Fairlamb, A.H., Augustyns, K., and Haemers, A. 2002b. Bioorg. Med. Chem. Lett. 12: 2553–2556.

    Article  CAS  Google Scholar 

  • Bloch, K. 1949. J Biol Chem. 179: 1245–1254.

    CAS  Google Scholar 

  • Bourbouloux, A., Shahi, P., Chakladar, A., Delrot, S., and Bachhawat, A.K. 2000. J. Biol. Chem. 275: 13259–65.

    Article  CAS  Google Scholar 

  • Brombacher, K., Fischer, B.B., Rufenacht, K., and Eggen, R.I.L. 2006. Yeast 23: 741–750.

    Article  CAS  Google Scholar 

  • Brzywczy, J., Sienko, M., Kucharska, A., and Paszewski, A. 2002. Yeast 19: 29–35.

    Article  CAS  Google Scholar 

  • Castro, V.M., Kelley, M.K., Engqvist-Goldstein, A., and Kauvar, L.M. 1993. Biochem. J. 292: 371–377.

    CAS  Google Scholar 

  • Cha, J.Y., Park, J.C., Jeon, B.S., Lee, Y.C., and Cho, Y.S. 2004. J. Microbiol. 42: 51–55.

    CAS  Google Scholar 

  • Chaudhuri. B., Ingavale, S., and Bachhawat, A.K. 1997. Genetics 145: 75–83.

    CAS  Google Scholar 

  • Chen, Y., Shertzer, H.G., Schneider, S.N., Nebert, D.W., and Dalton, T.P. 2005. J. Biol. Chem. 280: 33766–33774.

    Article  CAS  Google Scholar 

  • Cooke, R.W. and Drury, J.A. 2005. Biol. Neonate. 87: 178–80.

    Article  CAS  Google Scholar 

  • Dalton, T.P., Dieter, M.Z., Yang, Y., Shertzer, H.G., and Nebert, D.W. 2000. Biochem. Biophys. Res. Commun. 279: 324–329.

    Article  CAS  Google Scholar 

  • Daunes, S. and D' silva, C. 2002. Antimicrob. Agents. Chemother. 46: 434–437.

    Article  CAS  Google Scholar 

  • Dormer, U.H., Westwater, J., McLaren, N.F., Kent, N.A., Mellor, J., and Jamieson, D.J. 2000. J. Biol. Chem. 275: 32611–32616.

    Article  CAS  Google Scholar 

  • Dormer, U.H., Westwater, J., Stephen, D.W.S., and Jamieson, D.J. 2002. Biochem. Biophy. Acta. 1576: 23–29.

    CAS  Google Scholar 

  • During-Olsen, L., Regenberg, B., Gjermansen, C., Kielland-Brandt, M.C., and Hansen, J. 1999. Curr. Genet. 35: 609–617.

    Article  CAS  Google Scholar 

  • Fahey, R.C. and Sundquist, A.R. 1991. Adv. Enzymol. RAMolB. 64: 1–44.

    Article  CAS  Google Scholar 

  • Fauchon, M., Lagniel, G., Aude, J.C., Lombardia, L., Soularue, P., Petat, C., Marguerie, G., Sentenac, A., Werner, M., and Labarre, J. 2002. Mol. Cell. 9: 713–23.

    Article  CAS  Google Scholar 

  • Ganguli, D., Kumar, C., and Bachhawat, A.K. 2007. Genetics 175: 117–1151.

    Google Scholar 

  • Ganguly, D., Srikanth, C.V., Kumar, C., Vats, P., and Bachhawat, A.K. 2003. IUBMB Life 55: 553–554.

    Article  CAS  Google Scholar 

  • Grant, C.M., MacIver, F.H., and Dawes, I.W. 1996. Curr Genet. 29: 511–5.

    Article  CAS  Google Scholar 

  • Grant, C.M., MacIver, F.H., and Dawes, I.W. 1997. Mol. Biol. Cell. 8: 1699–1707.

    CAS  Google Scholar 

  • Gushima, H., Miya, T., Murata, k., and Kimura, A. 1983. J. Appl. Biochem. 5: 43–52.

    CAS  Google Scholar 

  • Harington, C.R. and Mead, T.H. 1935. Biochem. J. 29: 1602–1611.

    CAS  Google Scholar 

  • Hopkins, F.G. 1921. Biochem. J. 15: 286.

    CAS  Google Scholar 

  • Hopkins, F.G. 1929. J. Biol. Chem. 84: 269.

    CAS  Google Scholar 

  • Hunter, G. and Eagles, B.A. 1927. J. Biol. Chem. 72: 703.

    Google Scholar 

  • Ishii, S. and Miyajima, R. 1989. JP Patent 1, 141,591.

    Google Scholar 

  • Kaur, J. and Bachhawat, A.K. 2007. Genetics (In Press).

    Google Scholar 

  • Kazuhiro, H., Junichi, I., Shogo, F., Masahiro, N. 2003 (JP200428312).

    Google Scholar 

  • Kazuhiro, H., Masahiro, N., Zaido, M.S., Susumu, K., Shogo, F., Osamu, M., and Junichi, I. 2002. (JP2003284547A).

    Google Scholar 

  • Kimura, A., and Murata, K. 1986 USP 4,598, 046.

    Google Scholar 

  • Kumar, C., Sharma, R., and Bachhawat, A. K. 2003a. FEMS Microbiol Lett. 219: 187–194.

    Article  CAS  Google Scholar 

  • Kumar, C., Sharma, R., and Bachhawat, A.K. 2003b. Yeast 20: 857–63.

    Article  CAS  Google Scholar 

  • Lafaye, A., Junot, C., Pereira, Y., Lagniel, G., Tabet, J.C., Ezan, E., and Labarre, J. 2005. J Biol Chem. 280: 24723–24730.

    Article  CAS  Google Scholar 

  • Lang-Hinrichs, C., and Stahl, U. 1988. EP0300168A2.

    Google Scholar 

  • Li, Y., Chen, J., Zhou, N., Fu, W., Ruan, W., and Lun, S. 1998. Chin. J. Biotechnol. 14: 85–91.

    CAS  Google Scholar 

  • Li, Y., Hugenholtz, j., Abee, T., and Molenaar, D. 2003. Appl. Environ. Microbiol. 69: 5739–5745.

    Article  CAS  Google Scholar 

  • Li, Y., Hugenholtz, J., Sybesma, W., Abee, T., and Molenaar, D. 2005. Appl. Microbiol. Biotechnol. l67: 83–90.

    Article  Google Scholar 

  • Li, Y., Wei, G., and Chen, J. 2004. Appl. Microbiol. Biotechnol. 66: 233–242.

    Article  CAS  Google Scholar 

  • Liao, X.Y., Shen, W., Chen, J., Li, Y., and Du, G.C. 2006. Lett. Appl. Microbiol. 43: 211–214.

    Article  CAS  Google Scholar 

  • Lin. J.-P., Tian, J., You, J.-F., Jin, Z.-H., Xu, Z.-N., and Cen, P.-L. 2004. Biochem. Eng. J. 21: 19–25.

    Article  CAS  Google Scholar 

  • Liu, Y., Hama, H., Fujita, Y., Kondo, A., Inoue, Y., Kimura, A., and Fukuda, H. 1999b. Biotechnol. Bioeng. 64: 54–60.

    Article  CAS  Google Scholar 

  • Liu, C.H., Hwang, C.-F., and Liao, C.-C. 1999a. Process Biochem. 34: 17–23.

    Article  CAS  Google Scholar 

  • Liu, H., Lin, J.P., Cen, P.L., and Pan, Y.J. 2004. Process Biochem. 39: 1993–1997.

    Article  CAS  Google Scholar 

  • Lueder, D.V., and Phillips, M.A. 1996. J. Biol. Chem. 271: 17485–17490.

    Article  CAS  Google Scholar 

  • Meister, A. 1988. Trends Biochem. Sci. 13: 185–188.

    Article  CAS  Google Scholar 

  • Meister, A., and Anderson, M.E. 1983. Annu. Rev. Biochem. 52: 711–760.

    Article  CAS  Google Scholar 

  • Miwa, N. 1976. Glutathione. JP patent 51, 144, 789.

    Google Scholar 

  • Nie, W., Wei, G., Du, G., Li, Y., and Chen, J. 2005. Lett. Appl. Microbiol. 40: 378–384.

    Article  CAS  Google Scholar 

  • Ohtake, Y., Watanabe, K., Tezuka, H., Ogata, T., Yabuuchi, S., Murata, K., and Kimura, A. 1988. Agric. Biol. Chem. 52: 2753–2762.

    CAS  Google Scholar 

  • Ohtake, Y., Watanabe, K., Tezuka, H., Ogata, T., Yabuuchi, S., Murata, K., and Kimura, 1989. J. Ferment. Bioeng. 68: 390–399.

    Article  CAS  Google Scholar 

  • Orlowski, M., and Meister, A. 1970. Proc Natl Acad Sci USA. 67: 1248–55.

    Article  CAS  Google Scholar 

  • Ostergaard, H., Henriksen, A., Hansen, F.G., and Winther, J.R. 2004. J. Cell Biol. 166: 337–345.

    Article  CAS  Google Scholar 

  • Pailhade, R.J. de. 1888. Bull. Soc. Hist. Nat. Toulouse 173.

    Google Scholar 

  • Perrone, G.G., Grant, C.M., and Dawes, I.W. 2005. Mol. Biol. Cell 16: 218–230.

    Article  CAS  Google Scholar 

  • Pirie, N.W., and Pinhey, K.G. 1929. J. Biol. Chem. 84: 657.

    Google Scholar 

  • Reid, M., and Jahoor, F. 2001. Curr. Opin. Clin. Nutr. Metab. Care. 4: 65–71.

    Article  CAS  Google Scholar 

  • Richman, P.G., and Meister, A. 1975. J. Biol. Chem. 250: 1422–1426.

    CAS  Google Scholar 

  • Rosen, L.S., Laxa, B., Boulos, L.,Wiggins, L., Keck, J.G., Jameson, A.J., Parra, R., Patel, K., and Brown, G.L. 2004. Clin. Cancer. Res. 10: 3689–3698.

    Article  CAS  Google Scholar 

  • Sakato, K., and Tanaka, H. 1992. Biotechnol. Bioeng. 40: 904–912.

    Article  CAS  Google Scholar 

  • Sawa, Y., Shindo, H., Nishimura, S., and Ochiai, H. 1986. Agric. Biol. Chem. 50: 1361–1363.

    CAS  Google Scholar 

  • Schafer, F.Q., and Buettner, G.R. 2001 Free Radical Bio. Med. 30: 1191–1212.

    Article  CAS  Google Scholar 

  • Schultz, M., Dutta, S., and Tew, K.D. 1997. Adv. Drug Deliv. Rev. 26: 91–104.

    Article  CAS  Google Scholar 

  • Shimizu, H., Araki, K., and Shioya, S., Suga, K. 1991. Biotechnol. Bioeng. 38: 196–205.

    Article  CAS  Google Scholar 

  • Sies, H. 1999. Free Radical Bio. Med. 27: 916–921.

    Article  CAS  Google Scholar 

  • Smirnova, G.V., and Oktyabrsky, N. 2005. Biochemistry (Moscow).: 701199–1211.

    Google Scholar 

  • Springael, J.Y., and Penninckx, M.J. 2003. Biochem. J. 371: 589–95.

    Article  CAS  Google Scholar 

  • Srikanth, C.V., Vats, P., Bourbouloux, A., Delrot, S., and Bachhawat, A.K. 2005. Curr Genet. 47: 345–358.

    Article  CAS  Google Scholar 

  • Stephen, D.W., and Jamieson, D.J. 1997. Mol. Microbiol. 23: 203–210.

    Article  CAS  Google Scholar 

  • Stipanuk, M.H., Dominy, J.E Jr., Lee, J.-I. and Coloso, R.M. 2006. 5th Amino acid Assessment Workshop.

    Google Scholar 

  • Sugiyama, K., Izawa, S., and Inoue, Y. 2000. J. Biol. Chem. 275: 15535–15540.

    Article  CAS  Google Scholar 

  • Thomas, D., Jacquemin, I., and Surdin-Kerjan, Y. 1992. Mol. Cell.Biol. 12: 1719–1727.

    CAS  Google Scholar 

  • Thomas, D., and Surdin-Kerjan, Y. 1997. Microbiol. Mol. Biol. Rev. 61: 503–532.

    CAS  Google Scholar 

  • Udeh, K.O., and Achremowicz, B. 1997. Acta. Microbiol. Pol. 46: 105–114.

    CAS  Google Scholar 

  • Wei, G., Li, Y., and Du, G., Chen J. 2003. Biotechnol. Lett. 25: 887–890.

    Article  CAS  Google Scholar 

  • Wen, S., Zhang, T., and Tan T. 2004. Enzyme Microbial. Tech. 35: 501–507.

    Article  CAS  Google Scholar 

  • Wen, S., Zhang, T., and Tan, T. 2005. Process Biochem. 42: 3474–3479.

    Article  Google Scholar 

  • Wen, S., Zhang, T., and Tan, T. 2006. Process Biochem. (In Press)

    Google Scholar 

  • Wheeler, G.L., Quinn, K.A., Perrone, G., Dawes, I.W. and Grant, C.M. 2002. Mol. Microbiol. 46: 545–556.

    Article  CAS  Google Scholar 

  • Wheeler, G.L., Quinn, K.A., Perrone, G., Dawes, I.W., and Grant, C.M. 2003. J. Biol. Chem. 278: 49920–49928.

    Article  CAS  Google Scholar 

  • Wu, G., Fang, Y.Z., Yang, S., Lupton, J.R. and Turner, N.D. 2004. J. Nutr. 134: 489–92.

    CAS  Google Scholar 

  • Youssefian, S., Nakamura, M., Orudgev, E. and Kondo, N. 2001. Plant Physiol. 126: 1001–1011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Bachhawat, A.K. et al. (2009). Glutathione Production in Yeast. In: Satyanarayana, T., Kunze, G. (eds) Yeast Biotechnology: Diversity and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8292-4_13

Download citation

Publish with us

Policies and ethics