Advertisement

An explicit quantum chemical solvent model for strongly coupled solute–solvent systems in ground or excited state

  • ANDERS ÖHRN
  • GUNNAR KARLSTRÖM
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 6)

Abstract

A detailed account of the explicit quantum chemical solvent model QMSTAT is given. The model is presented in terms of three coupled aspects of relevance for all types of quantum chemical solvent models: the quantum chemical method, the intermolecular interactions and the statistical mechanical method. The quantum chemical method is either a compact natural orbital formulation of the standard Hartree–Fock method or a compact multiconfigurational method with a state basis. The latter method can describe excited states apart from the ground state and is for most systems an excellent approximation to the complete active space self-consistent field method. Both static and induced electrostatic interaction terms between the quantum chemical region and the solvent are included. Further, a non-electrostatic term is added to describe effects which derive from the Pauli principle. This term models both the exchange repulsion between solute and solvent and the packing effects an environment has on a molecule, in particular on diffuse states of the molecule. The statistical mechanical problem is solved with an exact Metropolis–Monte Carlo simulation that requires several similar quantum chemical problems to be solved. Since the quantum chemical problem and the statistical mechanical problem are solved as a coupled problem, the present model is especially useful for problems where electronic degrees of freedom of the solute strongly depend on the solvent distribution and vice versa. Three applications are summarized, which highlight this type of coupling present in QMSTAT and the non-electrostatic contribution. The examples are the solvation of four monatomic ions, the solvation of para-benzoquinone and the solvation of indole and the solvent shift to its absorption and fluorescence spectra

Keywords

Quantum Chemical Quantum Chemical Method Dispersion Interaction Explicit Solvent Model Statistical Mechanical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Margenau H, Kestner NR (1969) Theory of Intermolecular Forces, Pergamon Press Ltd., 1st ed. Headington Hill Hall, OxfordGoogle Scholar
  2. 2.
    Buckingham AD, Utting BD (1970) Ann Rev Phys Chem 21:287–316CrossRefGoogle Scholar
  3. 3.
    Pople JA (1982) Faraday Discuss Chem Soc 73:7–17CrossRefGoogle Scholar
  4. 4.
    Israelachvili JN (1992) Intermolecular and surface forces 2nd ed. Academic Press, LondonGoogle Scholar
  5. 5.
    Jerziorski B, Moszynski R et al. (1994) Chem Rev 94:1887–1930CrossRefGoogle Scholar
  6. 6.
    Woon DE (1994) J Chem Phys 100:2838–2850CrossRefGoogle Scholar
  7. 7.
    Stone AJ (1996) The Theory of Intermolecular Forces, 1st edn. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Engkvist O, Åstrand P-O et al. (2000) Chem Rev 100:4087–4108CrossRefGoogle Scholar
  9. 9.
    Chaasiński G, Szczȩśniak MM (2000) Chem Rev 100:4227–4252CrossRefGoogle Scholar
  10. 10.
    Coulson CA (1960) Rev Mod Phys 32:170–177CrossRefGoogle Scholar
  11. 11.
    Pople JA (1965) J Chem Phys 43:S229–S230CrossRefGoogle Scholar
  12. 12.
    Karplus M (1990) J Phys Chem 94:5435–5436CrossRefGoogle Scholar
  13. 13.
    Ángyán JG (1992) J Math Chem 10:93–137CrossRefGoogle Scholar
  14. 14.
    Tomasi J, Perisco M (1994) Chem Rev 94:2027–2094CrossRefGoogle Scholar
  15. 15.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200CrossRefGoogle Scholar
  16. 16.
    Luque FJ, Curutchet C et al. (2003) Phys Chem Chem Phys 5:3827–3836CrossRefGoogle Scholar
  17. 17.
    Tomasi J (2004) Theor Chem Acc 112:184–203CrossRefGoogle Scholar
  18. 18.
    Tomasi J, Mennucci B et al. (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  19. 19.
    Öhrn A, Karlström G (2007) Theor Chem Acc 117:441–449CrossRefGoogle Scholar
  20. 20.
    Moriarty NW, Karlström G (1996) J Phys Chem 100:17791–17796CrossRefGoogle Scholar
  21. 21.
    Öhrn A, Karlström G (2006) Mol Phys 104:3087–3099CrossRefGoogle Scholar
  22. 22.
    Wallqvist A, Ahlström P et al. (1990) J Phys Chem 94:1649–1656CrossRefGoogle Scholar
  23. 23.
    Stillinger FH, Rahman A (1974) J Chem Phys 60:1545–1557CrossRefGoogle Scholar
  24. 24.
    Berendsen HJC, Grigera JR et al. (1987) J Phys Chem 91:6269–6271CrossRefGoogle Scholar
  25. 25.
    Rullmann JAC, van Duijnen PT (1988) Mol Phys 63:451–475CrossRefGoogle Scholar
  26. 26.
    Rick SW, Stuart SJ (2002) Rev Comp Chem 18:89–146Google Scholar
  27. 27.
    Tapia O (1991) J Mol Struct (THEOCHEM) 72:59–72CrossRefGoogle Scholar
  28. 28.
    de Vries AH, van Duijnen PT et al. (1995) J Comp Chem 16:37–55CrossRefGoogle Scholar
  29. 29.
    Jansen G, Colonna F et al. (1996) Int J Quant Chem 58:251–265CrossRefGoogle Scholar
  30. 30.
    Böttcher CJF, van Belle OC et al. (1973) Theory of Electric Polarization, vol. 1, 2nd ed. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  31. 31.
    Friedman HL (1975) Mol Phys 29:1533–139CrossRefGoogle Scholar
  32. 32.
    Wallqvist A (1993) Mol Sim 10:13–17CrossRefGoogle Scholar
  33. 33.
    Petraglio G, Ceccarelli M et al. (2005) J Chem Phys 123:44103CrossRefGoogle Scholar
  34. 34.
    Buckingham AD (1959) Quart Rev 13:183–214CrossRefGoogle Scholar
  35. 35.
    Ahlrichs R (1976) Theor Chim Acta 41:7–15CrossRefGoogle Scholar
  36. 36.
    Hall GG, Smith CM (1984) Int J Quant Chem 25:881–890CrossRefGoogle Scholar
  37. 37.
    Hall GG, Smith CM (1986) Theor Chim Acta 69:71–81CrossRefGoogle Scholar
  38. 38.
    Guillot B, Guissani Y (2001) J Chem Phys 114:6720–6733CrossRefGoogle Scholar
  39. 39.
    Paricaud P, Předota M et al. (2005) J Chem Phys 122:244511CrossRefGoogle Scholar
  40. 40.
    Piquemal JP, Cisneros GA et al. (2006) J Chem Phys 124:104101CrossRefGoogle Scholar
  41. 41.
    Elking D, Darden T et al. (2007) J Comp Chem 28:1261–1274CrossRefGoogle Scholar
  42. 42.
    Applequist J, Carl JR et al. (1972) J Am Chem Soc 94:2952–2960CrossRefGoogle Scholar
  43. 43.
    Thole BT (1981) Chem Phys 59:341–350CrossRefGoogle Scholar
  44. 44.
    van Duijnen PT, Swart M (1998) J Phys Chem A 102:2399–2407CrossRefGoogle Scholar
  45. 45.
    Hellmann H (1935) J Chem Phys 3:61CrossRefGoogle Scholar
  46. 46.
    Phillips JC, Kleinman L (1959) Phys Rev 116:287–294CrossRefGoogle Scholar
  47. 47.
    Weeks JD, Rice SA (1968) J Chem Phys 49:2741–2755CrossRefGoogle Scholar
  48. 48.
    Bonifacic V, Hunzinaga S (1974) J Chem Phys 60:2779–2786CrossRefGoogle Scholar
  49. 49.
    Kahn LR, Baybutt P et al. (1976) J Chem Phys 65:3826–3853CrossRefGoogle Scholar
  50. 50.
    Szasz L (1985) Pseudopotential theory of atoms and molecules, John Wiley & Sons, New YorkGoogle Scholar
  51. 51.
    Pelissier M, Komiha N et al. (1988) J Comp Chem 9:298–302CrossRefGoogle Scholar
  52. 52.
    Andrae D, Häussermann U et al.(1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  53. 53.
    Dolg M. Grotendorst J (2000) In: Modern Methods and Algorithms of Quantum Chemistry, NIC Series, Vol 3. John von Neumann Institute for Computing, Jülich, pp 507–540Google Scholar
  54. 54.
    Barandiarán Z, Seijo L (1988) J Chem Phys 89:5739–5746CrossRefGoogle Scholar
  55. 55.
    Seijo L, Barandiarán Z et al. (1993) J Chem Phys 98:4041–4046CrossRefGoogle Scholar
  56. 56.
    Seijo L, Barandiarán Z (1996) Int J Quant Chem 60:617–634CrossRefGoogle Scholar
  57. 57.
    Seijo L, Barandiarán Z (2003) J Chem Phys 118:5335–5346CrossRefGoogle Scholar
  58. 58.
    Nicolas G, Durand P (1980) J Chem Phys 72:453–463CrossRefGoogle Scholar
  59. 59.
    Huzinaga S (1991) J Mol Struct (THEOCHEM) 234:51–73CrossRefGoogle Scholar
  60. 60.
    Poteau R, Ortega I et al. (2001) J Phys Chem A 105:198–205CrossRefGoogle Scholar
  61. 61.
    Abarenkov IV, Antonova IM (2004) Int J Quant Chem 100:649–660CrossRefGoogle Scholar
  62. 62.
    Carissan Y, Bessac F et al. (2006) Int J Quant Chem 106:727–733CrossRefGoogle Scholar
  63. 63.
    Schnitker J, Rossky PJ (1987) J Chem Phys 86:3462–3470CrossRefGoogle Scholar
  64. 64.
    Wallqvist A, Thirumalai D et al. (1987) J Chem Phys 86:6404–6418CrossRefGoogle Scholar
  65. 65.
    Vaidehi N, Wesolowski TA et al. (1992) J Chem Phys 97:4264–4271CrossRefGoogle Scholar
  66. 66.
    Panas I (1993) Chem Phys Lett 201:255–260CrossRefGoogle Scholar
  67. 67.
    Panas I (1993) Chem Phys Lett 206:312–317CrossRefGoogle Scholar
  68. 68.
    Yoshida N, Kato S (2000) J Chem Phys 113:4974–4984CrossRefGoogle Scholar
  69. 69.
    Hart EJ, Boag JW (1962) J Am Chem Soc 84:4090–4095CrossRefGoogle Scholar
  70. 70.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  71. 71.
    Kerdcharoen T, Liedl KR et al. (1996) Chem Phys 211:313–323CrossRefGoogle Scholar
  72. 72.
    Murrell JN, Randić M et al. (1965) Proc Roy Soc A 284:566–581CrossRefGoogle Scholar
  73. 73.
    Jeziorski B, Bulski M et al. (1976) Int J Quant Chem 10:281–297CrossRefGoogle Scholar
  74. 74.
    Gresh N, Claverie P et al. (1986) Int J Quant Chem 29:101–118CrossRefGoogle Scholar
  75. 75.
    Wallqvist A, Karlström G (1989) Chem Scr 29A:131–137Google Scholar
  76. 76.
    Wheatley RJ, Price SL (1990) Mol Phys 69:507–533CrossRefGoogle Scholar
  77. 77.
    Jensen JH, Gordon MS (1996) Mol Phys 89:1313–1325CrossRefGoogle Scholar
  78. 78.
    Gavezzotti A (2003) J Phys Chem B 107:2344–2353CrossRefGoogle Scholar
  79. 79.
    Valderrama E, Wheatley RJ (2003) J Comp Chem 24:2075–2082CrossRefGoogle Scholar
  80. 80.
    Gresh N, Piquemal JP et al. (2005) J Comp Chem 26:1113–1130CrossRefGoogle Scholar
  81. 81.
    Söderhjelm P, Karlström G et al. (2006) J Chem Phys 124:244101CrossRefGoogle Scholar
  82. 82.
    Mayer JE, Mayer MG (1933) Phys Rev 43:605–611CrossRefGoogle Scholar
  83. 83.
    Pyper NC, Pike CG et al. (1992) Mol Phys 76:353–372CrossRefGoogle Scholar
  84. 84.
    Giese TJ, York DM (2004) J Chem Phys 120:9903–9906CrossRefGoogle Scholar
  85. 85.
    Öhrn A, Karlström G (2004) J Phys Chem B 108:8452–8459CrossRefGoogle Scholar
  86. 86.
    Krishtal A, Senet P et al. (2006) J Chem Phys 125:034312CrossRefGoogle Scholar
  87. 87.
    Heaton RJ, Madden PA et al. (2006) J Chem Phys 125:144104CrossRefGoogle Scholar
  88. 88.
    Serr A, Netz RR (2006) Int J Quant Chem 106:2960–2974CrossRefGoogle Scholar
  89. 89.
    Price WC, Sherman WF (1960) Proc Roy Soc A 255:5–21CrossRefGoogle Scholar
  90. 90.
    Zipp A, Kauzmann W (1973) J Chem Phys 59:4215–4224CrossRefGoogle Scholar
  91. 91.
    Nowak R, Bernstein ER (1987) J Chem Phys 87:2457–2465CrossRefGoogle Scholar
  92. 92.
    Larrégaray P, Cavina A et al. (2005) Chem Phys 308:13–25CrossRefGoogle Scholar
  93. 93.
    Bayliss NS, McRae EG (1954) J Phys Chem 58:1002–1006CrossRefGoogle Scholar
  94. 94.
    Dobosavljević V, Henebry CW et al. (1988) J Chem Phys 88:5781–5789CrossRefGoogle Scholar
  95. 95.
    Dobosavljević V, Henebry CW et al. (1989) J Chem Phys 91:2470–2478CrossRefGoogle Scholar
  96. 96.
    Surján P, Ángyán JG (1994) Chem Phys Lett 225:258–264CrossRefGoogle Scholar
  97. 97.
    Chalmet S, Ruiz-López M (2000) Chem Phys Lett 329:154–159CrossRefGoogle Scholar
  98. 98.
    Tang KT, Toennies JP (1984) J Chem Phys 80:3726–3741CrossRefGoogle Scholar
  99. 99.
    Brdarski S, Karlström G (1998) J Phys Chem A 102:8182–8192CrossRefGoogle Scholar
  100. 100.
    London F (1942) J Phys Chem 46:305–316CrossRefGoogle Scholar
  101. 101.
    London F (1930) Z Phys 60:245–279Google Scholar
  102. 102.
    London F (1930) Z Phys Chem B 11:222–251Google Scholar
  103. 103.
    Stone AJ, Tong C-S (1989) Chem Phys 137:121–135CrossRefGoogle Scholar
  104. 104.
    Thole BT, van Duijnen PT (1980) Theor Chim Acta 55:307–318CrossRefGoogle Scholar
  105. 105.
    Thole BT, van Duijnen PT (1982) Chem Phys 71:211–220CrossRefGoogle Scholar
  106. 106.
    van Duijnen PT, de Vries AH (1996) Int J Quant Chem 60:1111–1132CrossRefGoogle Scholar
  107. 107.
    Ángyán JG, Jansen G (1990) Chem Phys Lett 175:313–318CrossRefGoogle Scholar
  108. 108.
    Li J, Cramer CJ et al. (2000) Int J Quant Chem 77:264–280CrossRefGoogle Scholar
  109. 109.
    Szabo A, Ostlund NS (1989) Modern Quantum Chemistry 2nd edn. Dover Publications, MineolaGoogle Scholar
  110. 110.
    Hall GG (1951) Proc Roy Soc A 205:541–552CrossRefGoogle Scholar
  111. 111.
    Roothaan CCJ (1951) Rev Mod Phys 23:69–89CrossRefGoogle Scholar
  112. 112.
    Bernhardsson A, Lindh R et al. (1996) Chem Phys Lett 251:141–149CrossRefGoogle Scholar
  113. 113.
    Löwdin P-O (1955) Phys Rev 97:1474–1489CrossRefGoogle Scholar
  114. 114.
    Davidsson ER (1972) Rev Mod Phys 44:451–464CrossRefGoogle Scholar
  115. 115.
    Almlöf J, Taylor PR (1987) J Chem Phys 86:4070–4077CrossRefGoogle Scholar
  116. 116.
    Widmark P-O, Malmqvist P-Å et al. (1990) Theor Chim Acta 77:291–306CrossRefGoogle Scholar
  117. 117.
    Widmark P-O, Persson BJ et al. (1991) Theor Chim Acta 79:419–432CrossRefGoogle Scholar
  118. 118.
    Pierloot K, Dumez B et al. (1995) Theor Chim Acta 90:87–114Google Scholar
  119. 119.
    Roos BO, Veryazov V et al. (2004) Theor Chem Acc 111:345–351CrossRefGoogle Scholar
  120. 120.
    Tofteberg T, Öhrn A et al. (2006) Chem Phys Lett 429:436–439CrossRefGoogle Scholar
  121. 121.
    Öhrn A, Karlström G (2007) Chem Phys Chem 8:523–525CrossRefGoogle Scholar
  122. 122.
    Öhrn A, Karlström G (2007) J Chem Theory Comput 3:1993–2001Google Scholar
  123. 123.
    Karlström G (1981) In: VanDuijnen PT, Nieuwpoort WC (ed) Proceeding of fifth seminar on Computational Methods in Quantum Chemistry, Laboratory of Chemical Physics, University of Groningen, Groningen, The Netherlands, p 353Google Scholar
  124. 124.
    Stone AJ (1981) Chem Phys Lett 83:233–239CrossRefGoogle Scholar
  125. 125.
    Stone AJ, Alderton M (1985) Mol Phys 56:1047–1064CrossRefGoogle Scholar
  126. 126.
    Stone AJ (2005) J Chem Theory Comput 1:1128–1132CrossRefGoogle Scholar
  127. 127.
    Söderhjelm P, Krogh JW et al. (2007) J Comp Chem 28:1083–1090CrossRefGoogle Scholar
  128. 128.
    Roos BO, Taylor PR et al. (1980) Chem Phys 48:157–173CrossRefGoogle Scholar
  129. 129.
    Roos BO (1987) Adv Chem Phys 69:399–445CrossRefGoogle Scholar
  130. 130.
    Roos BO, Andersson K (1992) Chem Phys Lett 192:5–13CrossRefGoogle Scholar
  131. 131.
    Stålring J, Bernhardsson A et al. (2001) Mol Phys 99:103–114CrossRefGoogle Scholar
  132. 132.
    Serrano-Andrés L, Roos BO (1996) J Am Chem Soc 118:185–195CrossRefGoogle Scholar
  133. 133.
    Serrano-Andrés L, Fülscher MP et al. (1997) Int J Quant Chem 65:167–181CrossRefGoogle Scholar
  134. 134.
    Sánchez ML, Martín ME et al. (2002) J Phys Chem B 106:4813–4817CrossRefGoogle Scholar
  135. 135.
    Losa AM, Galván IF et al. (2006) J Phys Chem B 110:18064–18071CrossRefGoogle Scholar
  136. 136.
    Borin AC, Serrano-Andrés L et al. (2006) Int J Quant Chem 106:2564–2577CrossRefGoogle Scholar
  137. 137.
    Malmqvist PÅ (1986) Int J Quant Chem 30:479–494CrossRefGoogle Scholar
  138. 138.
    Malmqvist PÅ, Roos BO (1989) Chem Phys Lett 155:189–194CrossRefGoogle Scholar
  139. 139.
    Öhrn A, Aquilante F (2007) Phys Chem Chem Phys 9:470–480Google Scholar
  140. 140.
    Metropolis N, Rusenbluth AW et al. (1953) J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  141. 141.
    Hastings WK (1970) Biometrika 57:97–109CrossRefGoogle Scholar
  142. 142.
    Robert CP, Casella G (2004) Monte Carlo statistical methods 2nd edn. Springer, New YorkGoogle Scholar
  143. 143.
    Brooks SP, Roberts GO (1998) Stat Comput 8:319–335CrossRefGoogle Scholar
  144. 144.
    Coutinho K, Canuto S (1997) Adv Quant Chem 28:89–105CrossRefGoogle Scholar
  145. 145.
    Coutinho K, Canuto S (2003) J Mol Struct (THEOCHEM) 632:235–246CrossRefGoogle Scholar
  146. 146.
    Rivelino R, Cabral BJC et al. (2005) Chem Phys Lett 407:13–17CrossRefGoogle Scholar
  147. 147.
    Grozema FC, van Duijnen PT (1998) J Phys Chem A 102:7984–7989CrossRefGoogle Scholar
  148. 148.
    Kongsted J, Osted A et al. (2004) J Chem Phys 121:8435–8445CrossRefGoogle Scholar
  149. 149.
    Andersson K, Malmqvist P-Å (1990) J Phys Chem 94:5483–5488CrossRefGoogle Scholar
  150. 150.
    Andersson K, Malmqvist P-Å et al. (1992) J Chem Phys 96:1218CrossRefGoogle Scholar
  151. 151.
    Roos BO, Andersson K et al. (1996) Adv Chem Phys 93:219–331CrossRefGoogle Scholar
  152. 152.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  153. 153.
    van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM et al. (1994) Chem Rev 94:1873–1885CrossRefGoogle Scholar
  154. 154.
    Becke AD, Johnson ER (2005) J Chem Phys 122:154104CrossRefGoogle Scholar
  155. 155.
    Johnson ER, Becke AD (2005) J Chem Phys 123:024101CrossRefGoogle Scholar
  156. 156.
    Lindh R, Malmqvist P-Å et al. (2001) Theor Chem Acc 106:178–187CrossRefGoogle Scholar
  157. 157.
    Gagliardi L, Lindh R et al. (2004) J Chem Phys 121:4494–4500CrossRefGoogle Scholar
  158. 158.
    Zwanzig RW (1954) J Chem Phys 22:1420–1426CrossRefGoogle Scholar
  159. 159.
    Lu N, Singh JK et al. (2003) J Chem Phys 118:2977–2984CrossRefGoogle Scholar
  160. 160.
    Lu N, Kofke DA et al. (2003) J Comp Chem 25:28–39CrossRefGoogle Scholar
  161. 161.
    Moriarty NW Karlström G (1997) J Chem Phys 106:6470–6474CrossRefGoogle Scholar
  162. 162.
    Moriarty NW, Karlström G (1997) Chem Phys Lett 279:372–376CrossRefGoogle Scholar
  163. 163.
    Hermida-Ramón JM, Karlström G (2003) J Phys Chem A 107:5217–5222CrossRefGoogle Scholar
  164. 164.
    Hermida-Ramón JM, Karlström G (2004) J Mol Struct (THEOCHEM) 712:167–173CrossRefGoogle Scholar
  165. 165.
    Öhrn A, Karlström G (2006) J Phys Chem A 110:1934–1942CrossRefGoogle Scholar
  166. 166.
    Öhrn A, Karlström G (2007) J Phys Chem A 111:10468–10477Google Scholar
  167. 167.
    Klopper W, Schütz M et al. (1995) J Chem Phys 103:1085–1098CrossRefGoogle Scholar
  168. 168.
    Schütz M, Brdarski S et al. (1997) J Chem Phys 107:4597–4605CrossRefGoogle Scholar
  169. 169.
    Carignano MA, Karlström G et al. (1997) J Phys Chem B 101:1142–1147CrossRefGoogle Scholar
  170. 170.
    Jungwirth P, Tobias DJ (2002) J Phys Chem B 106:6361–6373CrossRefGoogle Scholar
  171. 171.
    Hagberg D, Brdarski S et al. (2005) J Phys Chem B 109:4111–4117CrossRefGoogle Scholar
  172. 172.
    Jungwirth P, Tobias DJ (2006) Chem Rev 106:1259–1281CrossRefGoogle Scholar
  173. 173.
    Teale FWJ, Weber G (1957) Biochem J 65:476–482Google Scholar
  174. 174.
    van Duuren BL (1963) Chem Rev 63:325–354CrossRefGoogle Scholar
  175. 175.
    Mataga N, Torihashi Y et al. (1964) Theor Chim Acta 2:158–167CrossRefGoogle Scholar
  176. 176.
    Beechem JM, Brand L (1985) Annu Rev Biochem 54:43–71CrossRefGoogle Scholar
  177. 177.
    Valeur B (2001) Molecular fluorescence, principles and applications Wiley-VCH, WeinheimGoogle Scholar
  178. 178.
    Jameson DM, Croney JC et al. (2003) Methods Enzymol 360:1–43CrossRefGoogle Scholar
  179. 179.
    Royer CA (2006) Chem Rev 106:1769–1784CrossRefGoogle Scholar
  180. 180.
    Lee CY, McCammon JA et al. (1984) J Chem Phys 80:4448–4455CrossRefGoogle Scholar
  181. 181.
    Linse P (1987) J Chem Phys 86:4177–4187CrossRefGoogle Scholar
  182. 182.
    Wallqvist A (1990) Chem Phys Lett 165:437–442CrossRefGoogle Scholar
  183. 183.
    Du Q, Superfine R et al. (1993) Phys Rev Lett 70:2313–2316CrossRefGoogle Scholar
  184. 184.
    Benjamin I (1996) Chem Rev 96:1449–1475CrossRefGoogle Scholar
  185. 185.
    Liu P, Harder E et al. (2005) J Phys Chem B 109:2949–2955CrossRefGoogle Scholar
  186. 186.
    Richmond GL (2001) Chem Rev 102:2693–2724CrossRefGoogle Scholar
  187. 187.
    Benjamin I (2006) Chem Rev 106:1212–1233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • ANDERS ÖHRN
    • 1
  • GUNNAR KARLSTRÖM
    • 1
  1. 1.Department of Theoretical ChemistryChemical CentreSweden

Personalised recommendations