Skip to main content

An explicit quantum chemical solvent model for strongly coupled solute–solvent systems in ground or excited state

  • Chapter
  • First Online:
Solvation Effects on Molecules and Biomolecules

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 6))

Abstract

A detailed account of the explicit quantum chemical solvent model QMSTAT is given. The model is presented in terms of three coupled aspects of relevance for all types of quantum chemical solvent models: the quantum chemical method, the intermolecular interactions and the statistical mechanical method. The quantum chemical method is either a compact natural orbital formulation of the standard Hartree–Fock method or a compact multiconfigurational method with a state basis. The latter method can describe excited states apart from the ground state and is for most systems an excellent approximation to the complete active space self-consistent field method. Both static and induced electrostatic interaction terms between the quantum chemical region and the solvent are included. Further, a non-electrostatic term is added to describe effects which derive from the Pauli principle. This term models both the exchange repulsion between solute and solvent and the packing effects an environment has on a molecule, in particular on diffuse states of the molecule. The statistical mechanical problem is solved with an exact Metropolis–Monte Carlo simulation that requires several similar quantum chemical problems to be solved. Since the quantum chemical problem and the statistical mechanical problem are solved as a coupled problem, the present model is especially useful for problems where electronic degrees of freedom of the solute strongly depend on the solvent distribution and vice versa. Three applications are summarized, which highlight this type of coupling present in QMSTAT and the non-electrostatic contribution. The examples are the solvation of four monatomic ions, the solvation of para-benzoquinone and the solvation of indole and the solvent shift to its absorption and fluorescence spectra

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margenau H, Kestner NR (1969) Theory of Intermolecular Forces, Pergamon Press Ltd., 1st ed. Headington Hill Hall, Oxford

    Google Scholar 

  2. Buckingham AD, Utting BD (1970) Ann Rev Phys Chem 21:287–316

    Article  CAS  Google Scholar 

  3. Pople JA (1982) Faraday Discuss Chem Soc 73:7–17

    Article  CAS  Google Scholar 

  4. Israelachvili JN (1992) Intermolecular and surface forces 2nd ed. Academic Press, London

    Google Scholar 

  5. Jerziorski B, Moszynski R et al. (1994) Chem Rev 94:1887–1930

    Article  Google Scholar 

  6. Woon DE (1994) J Chem Phys 100:2838–2850

    Article  CAS  Google Scholar 

  7. Stone AJ (1996) The Theory of Intermolecular Forces, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  8. Engkvist O, Åstrand P-O et al. (2000) Chem Rev 100:4087–4108

    Article  CAS  Google Scholar 

  9. Chaasiński G, Szczȩśniak MM (2000) Chem Rev 100:4227–4252

    Article  CAS  Google Scholar 

  10. Coulson CA (1960) Rev Mod Phys 32:170–177

    Article  CAS  Google Scholar 

  11. Pople JA (1965) J Chem Phys 43:S229–S230

    Article  CAS  Google Scholar 

  12. Karplus M (1990) J Phys Chem 94:5435–5436

    Article  CAS  Google Scholar 

  13. Ángyán JG (1992) J Math Chem 10:93–137

    Article  Google Scholar 

  14. Tomasi J, Perisco M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  15. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200

    Article  CAS  Google Scholar 

  16. Luque FJ, Curutchet C et al. (2003) Phys Chem Chem Phys 5:3827–3836

    Article  CAS  Google Scholar 

  17. Tomasi J (2004) Theor Chem Acc 112:184–203

    Article  CAS  Google Scholar 

  18. Tomasi J, Mennucci B et al. (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  19. Öhrn A, Karlström G (2007) Theor Chem Acc 117:441–449

    Article  CAS  Google Scholar 

  20. Moriarty NW, Karlström G (1996) J Phys Chem 100:17791–17796

    Article  CAS  Google Scholar 

  21. Öhrn A, Karlström G (2006) Mol Phys 104:3087–3099

    Article  CAS  Google Scholar 

  22. Wallqvist A, Ahlström P et al. (1990) J Phys Chem 94:1649–1656

    Article  CAS  Google Scholar 

  23. Stillinger FH, Rahman A (1974) J Chem Phys 60:1545–1557

    Article  CAS  Google Scholar 

  24. Berendsen HJC, Grigera JR et al. (1987) J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  25. Rullmann JAC, van Duijnen PT (1988) Mol Phys 63:451–475

    Article  CAS  Google Scholar 

  26. Rick SW, Stuart SJ (2002) Rev Comp Chem 18:89–146

    CAS  Google Scholar 

  27. Tapia O (1991) J Mol Struct (THEOCHEM) 72:59–72

    Article  CAS  Google Scholar 

  28. de Vries AH, van Duijnen PT et al. (1995) J Comp Chem 16:37–55

    Article  Google Scholar 

  29. Jansen G, Colonna F et al. (1996) Int J Quant Chem 58:251–265

    Article  CAS  Google Scholar 

  30. Böttcher CJF, van Belle OC et al. (1973) Theory of Electric Polarization, vol. 1, 2nd ed. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  31. Friedman HL (1975) Mol Phys 29:1533–139

    Article  CAS  Google Scholar 

  32. Wallqvist A (1993) Mol Sim 10:13–17

    Article  CAS  Google Scholar 

  33. Petraglio G, Ceccarelli M et al. (2005) J Chem Phys 123:44103

    Article  CAS  Google Scholar 

  34. Buckingham AD (1959) Quart Rev 13:183–214

    Article  Google Scholar 

  35. Ahlrichs R (1976) Theor Chim Acta 41:7–15

    Article  CAS  Google Scholar 

  36. Hall GG, Smith CM (1984) Int J Quant Chem 25:881–890

    Article  CAS  Google Scholar 

  37. Hall GG, Smith CM (1986) Theor Chim Acta 69:71–81

    Article  CAS  Google Scholar 

  38. Guillot B, Guissani Y (2001) J Chem Phys 114:6720–6733

    Article  CAS  Google Scholar 

  39. Paricaud P, Předota M et al. (2005) J Chem Phys 122:244511

    Article  CAS  Google Scholar 

  40. Piquemal JP, Cisneros GA et al. (2006) J Chem Phys 124:104101

    Article  CAS  Google Scholar 

  41. Elking D, Darden T et al. (2007) J Comp Chem 28:1261–1274

    Article  CAS  Google Scholar 

  42. Applequist J, Carl JR et al. (1972) J Am Chem Soc 94:2952–2960

    Article  CAS  Google Scholar 

  43. Thole BT (1981) Chem Phys 59:341–350

    Article  CAS  Google Scholar 

  44. van Duijnen PT, Swart M (1998) J Phys Chem A 102:2399–2407

    Article  Google Scholar 

  45. Hellmann H (1935) J Chem Phys 3:61

    Article  Google Scholar 

  46. Phillips JC, Kleinman L (1959) Phys Rev 116:287–294

    Article  CAS  Google Scholar 

  47. Weeks JD, Rice SA (1968) J Chem Phys 49:2741–2755

    Article  CAS  Google Scholar 

  48. Bonifacic V, Hunzinaga S (1974) J Chem Phys 60:2779–2786

    Article  CAS  Google Scholar 

  49. Kahn LR, Baybutt P et al. (1976) J Chem Phys 65:3826–3853

    Article  CAS  Google Scholar 

  50. Szasz L (1985) Pseudopotential theory of atoms and molecules, John Wiley & Sons, New York

    Google Scholar 

  51. Pelissier M, Komiha N et al. (1988) J Comp Chem 9:298–302

    Article  CAS  Google Scholar 

  52. Andrae D, Häussermann U et al.(1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  53. Dolg M. Grotendorst J (2000) In: Modern Methods and Algorithms of Quantum Chemistry, NIC Series, Vol 3. John von Neumann Institute for Computing, Jülich, pp 507–540

    Google Scholar 

  54. Barandiarán Z, Seijo L (1988) J Chem Phys 89:5739–5746

    Article  Google Scholar 

  55. Seijo L, Barandiarán Z et al. (1993) J Chem Phys 98:4041–4046

    Article  CAS  Google Scholar 

  56. Seijo L, Barandiarán Z (1996) Int J Quant Chem 60:617–634

    Article  CAS  Google Scholar 

  57. Seijo L, Barandiarán Z (2003) J Chem Phys 118:5335–5346

    Article  CAS  Google Scholar 

  58. Nicolas G, Durand P (1980) J Chem Phys 72:453–463

    Article  CAS  Google Scholar 

  59. Huzinaga S (1991) J Mol Struct (THEOCHEM) 234:51–73

    Article  Google Scholar 

  60. Poteau R, Ortega I et al. (2001) J Phys Chem A 105:198–205

    Article  CAS  Google Scholar 

  61. Abarenkov IV, Antonova IM (2004) Int J Quant Chem 100:649–660

    Article  CAS  Google Scholar 

  62. Carissan Y, Bessac F et al. (2006) Int J Quant Chem 106:727–733

    Article  CAS  Google Scholar 

  63. Schnitker J, Rossky PJ (1987) J Chem Phys 86:3462–3470

    Article  CAS  Google Scholar 

  64. Wallqvist A, Thirumalai D et al. (1987) J Chem Phys 86:6404–6418

    Article  CAS  Google Scholar 

  65. Vaidehi N, Wesolowski TA et al. (1992) J Chem Phys 97:4264–4271

    Article  CAS  Google Scholar 

  66. Panas I (1993) Chem Phys Lett 201:255–260

    Article  CAS  Google Scholar 

  67. Panas I (1993) Chem Phys Lett 206:312–317

    Article  CAS  Google Scholar 

  68. Yoshida N, Kato S (2000) J Chem Phys 113:4974–4984

    Article  CAS  Google Scholar 

  69. Hart EJ, Boag JW (1962) J Am Chem Soc 84:4090–4095

    Article  CAS  Google Scholar 

  70. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  71. Kerdcharoen T, Liedl KR et al. (1996) Chem Phys 211:313–323

    Article  CAS  Google Scholar 

  72. Murrell JN, Randić M et al. (1965) Proc Roy Soc A 284:566–581

    Article  CAS  Google Scholar 

  73. Jeziorski B, Bulski M et al. (1976) Int J Quant Chem 10:281–297

    Article  CAS  Google Scholar 

  74. Gresh N, Claverie P et al. (1986) Int J Quant Chem 29:101–118

    Article  CAS  Google Scholar 

  75. Wallqvist A, Karlström G (1989) Chem Scr 29A:131–137

    CAS  Google Scholar 

  76. Wheatley RJ, Price SL (1990) Mol Phys 69:507–533

    Article  CAS  Google Scholar 

  77. Jensen JH, Gordon MS (1996) Mol Phys 89:1313–1325

    Article  CAS  Google Scholar 

  78. Gavezzotti A (2003) J Phys Chem B 107:2344–2353

    Article  CAS  Google Scholar 

  79. Valderrama E, Wheatley RJ (2003) J Comp Chem 24:2075–2082

    Article  CAS  Google Scholar 

  80. Gresh N, Piquemal JP et al. (2005) J Comp Chem 26:1113–1130

    Article  CAS  Google Scholar 

  81. Söderhjelm P, Karlström G et al. (2006) J Chem Phys 124:244101

    Article  CAS  Google Scholar 

  82. Mayer JE, Mayer MG (1933) Phys Rev 43:605–611

    Article  CAS  Google Scholar 

  83. Pyper NC, Pike CG et al. (1992) Mol Phys 76:353–372

    Article  CAS  Google Scholar 

  84. Giese TJ, York DM (2004) J Chem Phys 120:9903–9906

    Article  CAS  Google Scholar 

  85. Öhrn A, Karlström G (2004) J Phys Chem B 108:8452–8459

    Article  CAS  Google Scholar 

  86. Krishtal A, Senet P et al. (2006) J Chem Phys 125:034312

    Article  CAS  Google Scholar 

  87. Heaton RJ, Madden PA et al. (2006) J Chem Phys 125:144104

    Article  CAS  Google Scholar 

  88. Serr A, Netz RR (2006) Int J Quant Chem 106:2960–2974

    Article  CAS  Google Scholar 

  89. Price WC, Sherman WF (1960) Proc Roy Soc A 255:5–21

    Article  CAS  Google Scholar 

  90. Zipp A, Kauzmann W (1973) J Chem Phys 59:4215–4224

    Article  CAS  Google Scholar 

  91. Nowak R, Bernstein ER (1987) J Chem Phys 87:2457–2465

    Article  CAS  Google Scholar 

  92. Larrégaray P, Cavina A et al. (2005) Chem Phys 308:13–25

    Article  CAS  Google Scholar 

  93. Bayliss NS, McRae EG (1954) J Phys Chem 58:1002–1006

    Article  CAS  Google Scholar 

  94. Dobosavljević V, Henebry CW et al. (1988) J Chem Phys 88:5781–5789

    Article  Google Scholar 

  95. Dobosavljević V, Henebry CW et al. (1989) J Chem Phys 91:2470–2478

    Article  Google Scholar 

  96. Surján P, Ángyán JG (1994) Chem Phys Lett 225:258–264

    Article  Google Scholar 

  97. Chalmet S, Ruiz-López M (2000) Chem Phys Lett 329:154–159

    Article  CAS  Google Scholar 

  98. Tang KT, Toennies JP (1984) J Chem Phys 80:3726–3741

    Article  CAS  Google Scholar 

  99. Brdarski S, Karlström G (1998) J Phys Chem A 102:8182–8192

    Article  CAS  Google Scholar 

  100. London F (1942) J Phys Chem 46:305–316

    Article  CAS  Google Scholar 

  101. London F (1930) Z Phys 60:245–279

    Google Scholar 

  102. London F (1930) Z Phys Chem B 11:222–251

    CAS  Google Scholar 

  103. Stone AJ, Tong C-S (1989) Chem Phys 137:121–135

    Article  CAS  Google Scholar 

  104. Thole BT, van Duijnen PT (1980) Theor Chim Acta 55:307–318

    Article  CAS  Google Scholar 

  105. Thole BT, van Duijnen PT (1982) Chem Phys 71:211–220

    Article  CAS  Google Scholar 

  106. van Duijnen PT, de Vries AH (1996) Int J Quant Chem 60:1111–1132

    Article  CAS  Google Scholar 

  107. Ángyán JG, Jansen G (1990) Chem Phys Lett 175:313–318

    Article  Google Scholar 

  108. Li J, Cramer CJ et al. (2000) Int J Quant Chem 77:264–280

    Article  CAS  Google Scholar 

  109. Szabo A, Ostlund NS (1989) Modern Quantum Chemistry 2nd edn. Dover Publications, Mineola

    Google Scholar 

  110. Hall GG (1951) Proc Roy Soc A 205:541–552

    Article  CAS  Google Scholar 

  111. Roothaan CCJ (1951) Rev Mod Phys 23:69–89

    Article  CAS  Google Scholar 

  112. Bernhardsson A, Lindh R et al. (1996) Chem Phys Lett 251:141–149

    Article  CAS  Google Scholar 

  113. Löwdin P-O (1955) Phys Rev 97:1474–1489

    Article  Google Scholar 

  114. Davidsson ER (1972) Rev Mod Phys 44:451–464

    Article  Google Scholar 

  115. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070–4077

    Article  Google Scholar 

  116. Widmark P-O, Malmqvist P-Å et al. (1990) Theor Chim Acta 77:291–306

    Article  CAS  Google Scholar 

  117. Widmark P-O, Persson BJ et al. (1991) Theor Chim Acta 79:419–432

    Article  CAS  Google Scholar 

  118. Pierloot K, Dumez B et al. (1995) Theor Chim Acta 90:87–114

    CAS  Google Scholar 

  119. Roos BO, Veryazov V et al. (2004) Theor Chem Acc 111:345–351

    Article  CAS  Google Scholar 

  120. Tofteberg T, Öhrn A et al. (2006) Chem Phys Lett 429:436–439

    Article  CAS  Google Scholar 

  121. Öhrn A, Karlström G (2007) Chem Phys Chem 8:523–525

    Article  CAS  Google Scholar 

  122. Öhrn A, Karlström G (2007) J Chem Theory Comput 3:1993–2001

    Google Scholar 

  123. Karlström G (1981) In: VanDuijnen PT, Nieuwpoort WC (ed) Proceeding of fifth seminar on Computational Methods in Quantum Chemistry, Laboratory of Chemical Physics, University of Groningen, Groningen, The Netherlands, p 353

    Google Scholar 

  124. Stone AJ (1981) Chem Phys Lett 83:233–239

    Article  CAS  Google Scholar 

  125. Stone AJ, Alderton M (1985) Mol Phys 56:1047–1064

    Article  CAS  Google Scholar 

  126. Stone AJ (2005) J Chem Theory Comput 1:1128–1132

    Article  CAS  Google Scholar 

  127. Söderhjelm P, Krogh JW et al. (2007) J Comp Chem 28:1083–1090

    Article  CAS  Google Scholar 

  128. Roos BO, Taylor PR et al. (1980) Chem Phys 48:157–173

    Article  CAS  Google Scholar 

  129. Roos BO (1987) Adv Chem Phys 69:399–445

    Article  CAS  Google Scholar 

  130. Roos BO, Andersson K (1992) Chem Phys Lett 192:5–13

    Article  CAS  Google Scholar 

  131. Stålring J, Bernhardsson A et al. (2001) Mol Phys 99:103–114

    Article  Google Scholar 

  132. Serrano-Andrés L, Roos BO (1996) J Am Chem Soc 118:185–195

    Article  Google Scholar 

  133. Serrano-Andrés L, Fülscher MP et al. (1997) Int J Quant Chem 65:167–181

    Article  Google Scholar 

  134. Sánchez ML, Martín ME et al. (2002) J Phys Chem B 106:4813–4817

    Article  CAS  Google Scholar 

  135. Losa AM, Galván IF et al. (2006) J Phys Chem B 110:18064–18071

    Article  CAS  Google Scholar 

  136. Borin AC, Serrano-Andrés L et al. (2006) Int J Quant Chem 106:2564–2577

    Article  CAS  Google Scholar 

  137. Malmqvist PÅ (1986) Int J Quant Chem 30:479–494

    Article  CAS  Google Scholar 

  138. Malmqvist PÅ, Roos BO (1989) Chem Phys Lett 155:189–194

    Article  CAS  Google Scholar 

  139. Öhrn A, Aquilante F (2007) Phys Chem Chem Phys 9:470–480

    Google Scholar 

  140. Metropolis N, Rusenbluth AW et al. (1953) J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  141. Hastings WK (1970) Biometrika 57:97–109

    Article  Google Scholar 

  142. Robert CP, Casella G (2004) Monte Carlo statistical methods 2nd edn. Springer, New York

    Google Scholar 

  143. Brooks SP, Roberts GO (1998) Stat Comput 8:319–335

    Article  Google Scholar 

  144. Coutinho K, Canuto S (1997) Adv Quant Chem 28:89–105

    Article  CAS  Google Scholar 

  145. Coutinho K, Canuto S (2003) J Mol Struct (THEOCHEM) 632:235–246

    Article  CAS  Google Scholar 

  146. Rivelino R, Cabral BJC et al. (2005) Chem Phys Lett 407:13–17

    Article  CAS  Google Scholar 

  147. Grozema FC, van Duijnen PT (1998) J Phys Chem A 102:7984–7989

    Article  CAS  Google Scholar 

  148. Kongsted J, Osted A et al. (2004) J Chem Phys 121:8435–8445

    Article  CAS  Google Scholar 

  149. Andersson K, Malmqvist P-Å (1990) J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  150. Andersson K, Malmqvist P-Å et al. (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  151. Roos BO, Andersson K et al. (1996) Adv Chem Phys 93:219–331

    Article  CAS  Google Scholar 

  152. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  153. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM et al. (1994) Chem Rev 94:1873–1885

    Article  Google Scholar 

  154. Becke AD, Johnson ER (2005) J Chem Phys 122:154104

    Article  CAS  Google Scholar 

  155. Johnson ER, Becke AD (2005) J Chem Phys 123:024101

    Article  CAS  Google Scholar 

  156. Lindh R, Malmqvist P-Å et al. (2001) Theor Chem Acc 106:178–187

    Article  CAS  Google Scholar 

  157. Gagliardi L, Lindh R et al. (2004) J Chem Phys 121:4494–4500

    Article  CAS  Google Scholar 

  158. Zwanzig RW (1954) J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

  159. Lu N, Singh JK et al. (2003) J Chem Phys 118:2977–2984

    Article  CAS  Google Scholar 

  160. Lu N, Kofke DA et al. (2003) J Comp Chem 25:28–39

    Article  CAS  Google Scholar 

  161. Moriarty NW Karlström G (1997) J Chem Phys 106:6470–6474

    Article  CAS  Google Scholar 

  162. Moriarty NW, Karlström G (1997) Chem Phys Lett 279:372–376

    Article  CAS  Google Scholar 

  163. Hermida-Ramón JM, Karlström G (2003) J Phys Chem A 107:5217–5222

    Article  CAS  Google Scholar 

  164. Hermida-Ramón JM, Karlström G (2004) J Mol Struct (THEOCHEM) 712:167–173

    Article  CAS  Google Scholar 

  165. Öhrn A, Karlström G (2006) J Phys Chem A 110:1934–1942

    Article  CAS  Google Scholar 

  166. Öhrn A, Karlström G (2007) J Phys Chem A 111:10468–10477

    Google Scholar 

  167. Klopper W, Schütz M et al. (1995) J Chem Phys 103:1085–1098

    Article  CAS  Google Scholar 

  168. Schütz M, Brdarski S et al. (1997) J Chem Phys 107:4597–4605

    Article  Google Scholar 

  169. Carignano MA, Karlström G et al. (1997) J Phys Chem B 101:1142–1147

    Article  CAS  Google Scholar 

  170. Jungwirth P, Tobias DJ (2002) J Phys Chem B 106:6361–6373

    Article  CAS  Google Scholar 

  171. Hagberg D, Brdarski S et al. (2005) J Phys Chem B 109:4111–4117

    Article  CAS  Google Scholar 

  172. Jungwirth P, Tobias DJ (2006) Chem Rev 106:1259–1281

    Article  CAS  Google Scholar 

  173. Teale FWJ, Weber G (1957) Biochem J 65:476–482

    CAS  Google Scholar 

  174. van Duuren BL (1963) Chem Rev 63:325–354

    Article  CAS  Google Scholar 

  175. Mataga N, Torihashi Y et al. (1964) Theor Chim Acta 2:158–167

    Article  CAS  Google Scholar 

  176. Beechem JM, Brand L (1985) Annu Rev Biochem 54:43–71

    Article  CAS  Google Scholar 

  177. Valeur B (2001) Molecular fluorescence, principles and applications Wiley-VCH, Weinheim

    Google Scholar 

  178. Jameson DM, Croney JC et al. (2003) Methods Enzymol 360:1–43

    Article  CAS  Google Scholar 

  179. Royer CA (2006) Chem Rev 106:1769–1784

    Article  CAS  Google Scholar 

  180. Lee CY, McCammon JA et al. (1984) J Chem Phys 80:4448–4455

    Article  CAS  Google Scholar 

  181. Linse P (1987) J Chem Phys 86:4177–4187

    Article  CAS  Google Scholar 

  182. Wallqvist A (1990) Chem Phys Lett 165:437–442

    Article  CAS  Google Scholar 

  183. Du Q, Superfine R et al. (1993) Phys Rev Lett 70:2313–2316

    Article  CAS  Google Scholar 

  184. Benjamin I (1996) Chem Rev 96:1449–1475

    Article  CAS  Google Scholar 

  185. Liu P, Harder E et al. (2005) J Phys Chem B 109:2949–2955

    Article  CAS  Google Scholar 

  186. Richmond GL (2001) Chem Rev 102:2693–2724

    Article  CAS  Google Scholar 

  187. Benjamin I (2006) Chem Rev 106:1212–1233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

ÖHRN, A., KARLSTRÖM, G. (2008). An explicit quantum chemical solvent model for strongly coupled solute–solvent systems in ground or excited state. In: Canuto, S. (eds) Solvation Effects on Molecules and Biomolecules. Challenges and Advances in Computational Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8270-2_9

Download citation

Publish with us

Policies and ethics