Skip to main content

Solvent Effects on Radiative and Non-Radiative Excited State Decays

  • Chapter
  • First Online:
  • 1345 Accesses

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 6))

Abstract

An extended version of the ASEP/MD method that permits the unified treatment of solvent effects on both radiative and non-radiative excited state decays is presented. The method combines a high-level quantum-mechanic description of the ground and excited states of the solute molecule with molecular dynamics simulations of the solvent. De-excitations are intrinsically dynamic processes where there exists an interplay between electronic structure and nuclear dynamics. We have undertaken this problem by establishing two limit situations, which we have characterized as equilibrium and non-equilibrium solvation regimes. In the former, we suppose decay times long enough to allow a complete relaxation of the solute and the solvent structure. In the latter, we suppose the decay process is fast enough to prevent the solvent equilibration. As an example of application of the methodology the solvent effects on radiative and non-radiative de-excitation processes in acrolein are studied

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bayliss NS, McRae EG (1954) J Phys Chem 58:1002

    Article  CAS  Google Scholar 

  2. Tomasi J, Persico M (1994) Chem Rev 94:2027

    Article  CAS  Google Scholar 

  3. Rivail JL, Rinaldi D (1995) In: Leszczynski J (ed) Computational chemistry: review of current trends, World Scientific Publishing, Singapore

    Google Scholar 

  4. Cramer CJ, Truhlar DG (1995) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol VI. VCH Publishers, New York, p 1

    Google Scholar 

  5. Martín ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2000) J Chem Phys 113:6308

    Article  Google Scholar 

  6. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) J Chem Phys 124:124520

    Article  Google Scholar 

  7. Improta R, Barone V, Santoro F (2007) Angew Chem Int Ed 46:405

    Google Scholar 

  8. Lippert E (1957) Z Elektrochem Ber Bunsenges Phys Chem 61:962

    CAS  Google Scholar 

  9. Lippert E (1961) Angew Chem 73:695

    Article  CAS  Google Scholar 

  10. Whery EL (1990) In: Guilbault GG (ed) Practical fluorescence, 2 nd edn. Marcel Dekker, Inc., New York, p 127

    Google Scholar 

  11. Toniolo A, Ben-Nun M, Martínez TJ (2002) J Phys Chem A 106:4679

    Article  CAS  Google Scholar 

  12. Toniolo A, Granucci G, Martínez TJ (2003) J Phys Chem A 107:3822

    Article  CAS  Google Scholar 

  13. Burghardt I, Cederbaum L, Hynes JT (2004) Faraday Discuss 127:395

    Article  CAS  Google Scholar 

  14. Spezia R, Burghardt I, Hynes JT (2006) Mol Phys 104:903

    Article  CAS  Google Scholar 

  15. Garavelli M, Rugen F, Ogliano F, Bearpark MJ, Bernardi F, Olivucci M, Robb MA (2003) J Comput Chem 24:1357

    Article  CAS  Google Scholar 

  16. Frutos LM, Andruniów T, Santoro F, Ferré N, Olivucci M (2007) Proc Natl Acad Sci USA 104:7764

    Article  CAS  Google Scholar 

  17. Yamazaki S, Kato S (2005) J Chem Phys 123:114510

    Article  Google Scholar 

  18. Yamazaki S, Kato S (2006) J Am Chem Soc 129:2901

    Article  Google Scholar 

  19. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  20. Caricato M, Ingrosso F, Mennucci B, Tomasi J (2005) J Chem Phys 122:154501

    Article  Google Scholar 

  21. Aguilar MA (2001) J Phys Chem A 105:10393

    Article  CAS  Google Scholar 

  22. Sánchez ML, Aguilar MA, Olivares del Valle FJ (1997) J Comput Chem 18:313

    Article  Google Scholar 

  23. Sánchez ML, Martín ME, Aguilar MA, Olivares del Valle FJ (2000) J Comput Chem 21:705

    Article  Google Scholar 

  24. Sánchez ML, Martín ME, Fdez. Galván I, Olivares del Valle FJ, Aguilar MA (2002) J Phys Chem B 106:4813

    Article  Google Scholar 

  25. Martín ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2002) J Chem Phys 116:1613

    Article  Google Scholar 

  26. Fdez. Galván I, Sánchez ML, Martín ME, Olivares del Valle FJ, Aguilar MA (2003) Comput Phys Commun 155:244

    Article  Google Scholar 

  27. Ghoneim N, Suppan P (1995) Spectrochim Acta 51A:1043

    CAS  Google Scholar 

  28. Linder B (1967) Adv Chem Phys 12:225

    Article  CAS  Google Scholar 

  29. Karlström G, Halle B (1993) J Chem Phys 99:8056

    Article  Google Scholar 

  30. Tapia O, Goscinski O (1975) Mol Phys 29:1653

    Article  CAS  Google Scholar 

  31. Warshel A (1991) Computer modelling of chemical reactions in enzymes and solutions, Wiley Interscience Publication, New York

    Google Scholar 

  32. Ten-no S, Hirata F, Kato S (1993) Chem Phys Lett 214:391

    Article  CAS  Google Scholar 

  33. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  34. Chirlian LE, Francl MM (1987) J Comput Chem 8:894

    Article  CAS  Google Scholar 

  35. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361

    Article  CAS  Google Scholar 

  36. Martín ME, Muñoz Losa A, Fdez. Galván I, Aguilar MA (2004) J Chem Phys 121:3710

    Article  Google Scholar 

  37. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  38. Okuyama-Yoshida N, Nagaoka M, Yamabe T (1998) Int J Quantum Chem 70:95

    Google Scholar 

  39. Okuyama-Yoshida N, Nagaoka M, Yamabe T (2000) J Chem Phys 113:3519

    Google Scholar 

  40. Hirao H, Nagae Y, Nagaoka M (2001) Chem Phys Lett 348:350

    Google Scholar 

  41. Fdez. Galván I, Sánchez ML, Martín ME, Olivares del Valle FJ, Aguilar MA (2003) J Chem Phys 118:255

    Article  Google Scholar 

  42. Bearpark MJ, Robb MA, Schlegel HB (1994) Chem Phys Lett 223:269

    Article  CAS  Google Scholar 

  43. Yarkony DR (2004) In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections, Advanced Series in Physical Chemistry no. 15, World Scientific, Singapore, p 42

    Google Scholar 

  44. Muñoz Losa A, Martín ME, Fdez. Galván I, Aguilar MA (2007) Chem Phys Lett 443:76

    Article  Google Scholar 

  45. Fdez. Galván I, Martín ME, Aguilar MA (2004) J Comput Chem 25:1227

    Article  Google Scholar 

  46. Kollman PA (1993) Chem Rev 93:2395

    Article  CAS  Google Scholar 

  47. Becker RS, Inuzuka K, King J (1970) J Chem Phys 52:5164

    Article  CAS  Google Scholar 

  48. Muñoz Losa A, Fdez. Galván I, Martín ME, Aguilar MA (2006) J Phys Chem B 110:18064

    Article  Google Scholar 

  49. Widmark P-O, Malmqvist P-Å, Roos BO (1990) Theor Chim Acta 77:291

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr. JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Rev. A11.3, Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  51. Refson K (2000) Comput Phys Commun 126:310

    Article  CAS  Google Scholar 

  52. Andersson K, Barysz M, Bernhardsson A, Blomberg MRA, Carissan Y, Cooper DL, Fülscher MP, Gagliardi L, de Graaf C, Hess BA, Hagberg D, Karlström G, Lindh R, Malmqvist P-Å, Nakajima T, Neogrády P, Olsen J, Raab J, Roos BO, Ryde U, Schimmelpfennig B, Schütz M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stålring J, Thorsteinsson T, Veryazov V, Widmark P-O (2006) Molcas Version 6, University of Lund, Lund, Sweden

    Google Scholar 

  53. Moskvin AE (1966) Theor Exp Chem 2:175

    Google Scholar 

  54. Reguero M, Olivucci M, Bernardi F, Robb MA (1994) J Am Chem Soc 116:2103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

MuÑoz Losa, A., Fdez. GalvÁn, I., MartÍn, M.E., Aguilar, M.A. (2008). Solvent Effects on Radiative and Non-Radiative Excited State Decays. In: Canuto, S. (eds) Solvation Effects on Molecules and Biomolecules. Challenges and Advances in Computational Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8270-2_6

Download citation

Publish with us

Policies and ethics