Advertisement

A Quantum Chemical Approach to Free Energy Calculation for Chemical Reactions in Condensed System: Combination of a Quantum Chemical Method with a Theory of Statistical Mechanics

  • Hideaki Takahashi
  • Nobuyuki Matubayasi
  • Masayoshi Nakano
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 6)

Abstract

A recent development to compute free energy changes associated with chemical processes in condensed phase has been reviewed. The methodology is based on the hybrid quantum mechanical/molecular mechanical (QM/MM) approach combined with the novel theory of solutions, where the electronic structure calculation in the QM subsystem is conducted by the Kohn–Sham density functional theory (KS-DFT) utilizing the real-space grids to represent the one-electron orbitals, while the distribution functions for MM molecules needed to compute the free energy change of interest are constructed in terms of the QM/MM interaction energies. The following sections are devoted to the overview of the existing methodologies for the free energy calculation for chemical event and to the detailed description of the real-space-based DFT as well as the theory of solutions. Next we present a theory to combine the quantum mechanics with the statistical mechanics, where an emphasis will be placed on the treatment of the many-body interaction inherent with the quantum mechanical object. Finally, the several applications of the methodology to the solution system are presented to demonstrate the accuracy and efficiency of the method

Keywords

Free Energy Change Radial Distribution Function Solvent Interaction Energy Representation Solvation Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berne BJ, Ciccotti G, Coker DF (eds) (1998) Classical and quantum dynamics in condensed phase simulations, World Scientific, SingaporeGoogle Scholar
  2. 2.
    Szabo A, Ostlund NS (1982) Modern quantum chemistry, Macmillan, New YorkGoogle Scholar
  3. 3.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Kohn W, Sham L (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  5. 5.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471CrossRefGoogle Scholar
  6. 6.
    Gao J, Thompson MA (eds) (1998) Combined quantum mechanical and molecular mechanical methods, American Chemical Society, Washington DCGoogle Scholar
  7. 7.
    Wu SY, Jayanthi CS (2002) Phys Rep 358:1CrossRefGoogle Scholar
  8. 8.
    Yang W (1991) Phys Rev Lett 66:1438CrossRefGoogle Scholar
  9. 9.
    Prodan E, Kohn W (2005) PNAS 102:11635CrossRefGoogle Scholar
  10. 10.
    Zwanzig RW (1954) J Chem Phys 22:1420CrossRefGoogle Scholar
  11. 11.
    Chandler D, Andersen HC (1972) J Chem Phys 57:1930CrossRefGoogle Scholar
  12. 12.
    Hirata F, Rossky PJ (1981) Chem Phys Lett 83:329CrossRefGoogle Scholar
  13. 13.
    Hansen JP, McDonald IR (1986) Theory of simple liquids, 2nd edn. Academic Press, LondonGoogle Scholar
  14. 14.
    Matubayasi N, Nakahara M (2000) J Chem Phys 113:6070CrossRefGoogle Scholar
  15. 15.
    Matubayasi N, Nakahara M (2002) J Chem Phys 117:3605; erratum (2003) J Chem Phys 118:2446CrossRefGoogle Scholar
  16. 16.
    Matubayasi N, Nakahara M (2003) J Chem Phys 119:9686CrossRefGoogle Scholar
  17. 17.
    Tomasi J, Persico M (1994) Chem Rev 94:2027CrossRefGoogle Scholar
  18. 18.
    Ten-no S, Hirata F, Kato S (1994) J Chem Phys 110:7443CrossRefGoogle Scholar
  19. 19.
    Takahashi H, Matubayasi N, Nakahara M, Nitta T (2004) J Chem Phys 121:3989CrossRefGoogle Scholar
  20. 20.
    Beck TL (2000) Rev Mod Phys 72:1041CrossRefGoogle Scholar
  21. 21.
    Hirose K, Ono T, Fujimoto Y, Tsukamoto S (2005) First-principles calculations in real-space formalism, Imperial College Press, LondonGoogle Scholar
  22. 22.
    Thomas LH (1927) Proc Camb Phil Soc 23:542CrossRefGoogle Scholar
  23. 23.
    Fermi E (1927) Rend. Accad. Lincei, 6:602Google Scholar
  24. 24.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864CrossRefGoogle Scholar
  25. 25.
    Slater JC (1951) Phys Rev 81:385CrossRefGoogle Scholar
  26. 26.
    Dirac PAM (1930) Proc Camb Phil Soc 26:376CrossRefGoogle Scholar
  27. 27.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  28. 28.
    Colle R, Salvetti O (1975) Theor Chim Acta 37:329CrossRefGoogle Scholar
  29. 29.
    Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425CrossRefGoogle Scholar
  30. 30.
    Chelikowsky JR, Troullier N, Saad Y (1994) Phys Rev Lett 72:1240CrossRefGoogle Scholar
  31. 31.
    Chelikowsky JR, Troullier N, Wu K, Saad Y (1994) Phys Rev B 50:11355CrossRefGoogle Scholar
  32. 32.
    Jing X, Troullier N, Dean D, Binggeli N, Chelikowsky JR, Wu K, Saad Y (1994) Phys Rev B 50:12234CrossRefGoogle Scholar
  33. 33.
    Barnett RN, Landman U (1993) Phys Rev B 48:2081CrossRefGoogle Scholar
  34. 34.
    Becke AD (1988) J Chem Phys 88:2547CrossRefGoogle Scholar
  35. 35.
    Ono T, Hirose K (1999) Phys Rev Lett 82:5016CrossRefGoogle Scholar
  36. 36.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  37. 37.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  38. 38.
    Hori T, Takahashi H, Nitta T (2005) J Theor Comp Chem 4:867CrossRefGoogle Scholar
  39. 39.
    Ruiz-Lopez MF (ed) (2003) Combined QM/MM calculations in chemistry and biochemistry. J Mol Struct (THEOCHEM) 632: special issueGoogle Scholar
  40. 40.
    Takahashi H, Hori T, Hashimoto H, Nitta T (2001) J Comp Chem 22:1252CrossRefGoogle Scholar
  41. 41.
    Takahashi H, Hori T, Wakabayashi T, Nitta T (2001) J Phys Chem A 105:4351CrossRefGoogle Scholar
  42. 42.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids, Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Frenkel D, Smit B (2002) Understanding molecular simulation, from algorithms to applications, 2nd edn. Academic Press, LondonGoogle Scholar
  44. 44.
    Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Chem Phys Lett 222:529CrossRefGoogle Scholar
  45. 45.
    Resat H, Mezei M (1994) J Chem Phys 101:6126CrossRefGoogle Scholar
  46. 46.
    Zacharias M, Straatsma TP, McCammon JA (1994) J Chem Phys 100:9025CrossRefGoogle Scholar
  47. 47.
    Lu N, Singh JK, Kofke DA (2003) J Chem Phys 118:2977CrossRefGoogle Scholar
  48. 48.
    Shirts MR, Pande VS (2005) J Chem Phys 122:144107CrossRefGoogle Scholar
  49. 49.
    Matubayasi N, Reed LH, Levy RM (1994) J Phys Chem 98:10640CrossRefGoogle Scholar
  50. 50.
    Singer SJ, Chandler D (1985) Mol Phys 55:621CrossRefGoogle Scholar
  51. 51.
    Kovalenko A, Hirata F (1999) J Chem Phys 110:10095CrossRefGoogle Scholar
  52. 52.
    Kast SM (2001) Phys Chem Chem Phys 3:5087CrossRefGoogle Scholar
  53. 53.
    Freedman H, Truong TN (2003) Chem Phys Lett 381:362CrossRefGoogle Scholar
  54. 54.
    Freedman H, Truong TN (2004) J Chem Phys 121:12447CrossRefGoogle Scholar
  55. 55.
    Balbuena PB, Johnston KP, Rossky PJ (1995) J Phys Chem 99:1554CrossRefGoogle Scholar
  56. 56.
    Balbuena PB, Johnston KP, Rossky PJ (1996) J Phys Chem 100:2706CrossRefGoogle Scholar
  57. 57.
    Matubayasi N, Liang KK, Nakahara M (2006) J Chem Phys 124:154908CrossRefGoogle Scholar
  58. 58.
    Takahashi H, Hori T, Wakabayashi T, Nitta T (2000) Chem Lett 3:222CrossRefGoogle Scholar
  59. 59.
    Takahashi H, Hashimoto H, Nitta T (2003) J Chem Phys 119:7964CrossRefGoogle Scholar
  60. 60.
    Takahashi H, Takei S, Hori T, Nitta T (2003) J Mol Struct (THEOCHEM), 632:185CrossRefGoogle Scholar
  61. 61.
    Hori T, Takahashi H, Nitta T (2003) J Chem Phys 119:8492CrossRefGoogle Scholar
  62. 62.
    Hori T, Takahashi H, Nitta T (2003) J Comput Chem 24:209CrossRefGoogle Scholar
  63. 63.
    Takahashi H, Kawashima Y, Nitta T, Matubayasi N (2005) J Chem Phys 123:124504CrossRefGoogle Scholar
  64. 64.
    Takahashi H, Satou W, Hori T, Nitta T. (2005) J Chem Phys 122:044504CrossRefGoogle Scholar
  65. 65.
    Hori T, Takahashi H, Nakano M, Nitta T, Yang W (2005) Chem Phys Lett 419:240CrossRefGoogle Scholar
  66. 66.
    Hori T, Takahashi H, Furukawa S, Nakano M, Yang W (2007) J Phys Chem B 111:581CrossRefGoogle Scholar
  67. 67.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926CrossRefGoogle Scholar
  68. 68.
    Ewald P (1921) Ann Phys 64:253CrossRefGoogle Scholar
  69. 69.
    Andzelm J, Kölmel C, Klamt A (1995) J Chem Phys 103:9312CrossRefGoogle Scholar
  70. 70.
    Tortonda FR, Pascual-Ahuir JL, Silla E, Tuñón I, Ramírez F (1998) J Chem Phys 109:592CrossRefGoogle Scholar
  71. 71.
    Nagaoka M, Okuyama-Yoshida N, Yamabe T (1998) J Phys Chem A 102:8202CrossRefGoogle Scholar
  72. 72.
    Tuñón I, Silla E, Ruiz-López MF (2000) Chem Phys Lett 321:433CrossRefGoogle Scholar
  73. 73.
    Tuñón I, Silla E, Millot C, Martins-Costa MTC, Ruiz-López MF(1998) J Phys Chem A 102:8673CrossRefGoogle Scholar
  74. 74.
    Gaffney JS, Pierce RC, Friedman L (1977) J Am Chem Soc 99:4293CrossRefGoogle Scholar
  75. 75.
    Haberfield P (1980) J Chem Edu 57:346CrossRefGoogle Scholar
  76. 76.
    Wada G, Tamura E, Okina M, Nakamura M (1982) Bull Chem Soc Jpn 55:3064CrossRefGoogle Scholar
  77. 77.
    Frisch MJ et al (2002) Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hideaki Takahashi
    • 1
  • Nobuyuki Matubayasi
    • 2
  • Masayoshi Nakano
    • 3
  1. 1.Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Institute for Chemical ResearchKyoto UniversityUjiJapan
  3. 3.Department of Materials Engineering Science, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations