Skip to main content
  • 1445 Accesses

The transmembrane potential is sometimes called resting membrane potential, although a viable cell constitutes an ‘arena’ of many complex biochemical transformations, and, thereby, is never at rest. The membrane itself is continually traversed (both passively and actively) by electrical ionic currents. However, the resting membrane potential has a special significance in the case of excitable cells, and it is to be distinguished from local and action potentials, discussed later on in this chapter.

The most common method of determining the transmembrane potential (Fig. 6.1) relies on measuring the potential difference between a large reference electrode (RE) immersed in the suspending medium of the cell and a microelectrode (μE) inserted through the membrane into the interior of the cell (Koester, 1991; Guyton, 1992; Bear et al., 2001). It can also be measured by quantifying the fluorescence intensity and/or spectral shift of voltage-sensitive fluorescent dyes as they approach the membrane (Emaus et al., 1986; Hibino et al., 1993). More recently, an interesting variant of the dye-based method has been developed, which relies on dyes that generate second harmonics when hit by intense ultrashort (i.e., femtosecond to nanosecond) laser pulses (Sacconi et al., 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, C. M. and Bezanilla, F. (1973) Currents related to movement of the gating particles of the sodium channels, Nature, 242: 459

    Article  ADS  Google Scholar 

  • Barzda, V., Greenhalgh, C., Aus der, A. J., Elmore, S., van Beek, J. and Squier, J. (2005) Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy, Opt. Express, 13: 8263

    Article  ADS  Google Scholar 

  • Bear, M. F., Connors, W. B. and Paradiso, M. A. (2001) Neuroscience: Exploring the Brain, 2nd ed., Lippincott Williams & Wilkins, Baltimore, MD/Philadelphia

    Google Scholar 

  • Bishop, P. O. and Levick, W. R. (1956) Published Online: 4 Feb 2005, Saltatory conduction in single isolated and non-isolated myelinated nerve fibres, J. Cell. Comp. Physiol., 48: 1

    Article  Google Scholar 

  • Boyd, R. W. (2003) Nonlinear Optics, 2nd ed., Academic, Boston, MA

    Google Scholar 

  • Bullock, T. H. (1959) Neuron doctrine and electrophysiology, Science, 129: 997

    Article  ADS  Google Scholar 

  • Clay, J. R. (2005) Axonal excitability revisited, Progr. Biophys. Mol. Biol., 88: 59

    Article  Google Scholar 

  • Cole, K. S. (1949) Dynamic electrical characteristics of squid axon membrane, Arch. Sci. Physiol, 3: 253

    Google Scholar 

  • Emaus, R. K., Grunwald, R. and Lemasters, J. J. (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties, Biochem. Biophys. Acta, 850: 436

    Article  Google Scholar 

  • Fitzhugh, R. (1962) Computation of Impulse Initiation and Saltatory Conduction in Myleninated Nerve Fiber, Biophys. J., 2: 11

    Article  ADS  MathSciNet  Google Scholar 

  • Glaser, R. (2001) Biophysics, 5th ed., Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Goldman, D. E. (1943) Potential, impedance and rectification in membranes, J. Physiol., 27: 37

    Google Scholar 

  • Guyton, A. C. (1992): Human Physiology and Mechanisms of Disease, 5th ed., Saunders, Philadelphia.

    Google Scholar 

  • Hibino, M., Itoh, H., Kinosita, K. Jr. (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential, Biophys. J., 64: 1789

    Article  ADS  Google Scholar 

  • Hermann L (1899) Zur Theorie der Erregungsleitung und der elektrischen Erregung, Pflüger Arch. ges. Physiol., 75: 574

    Article  Google Scholar 

  • Hermann, L. (1905a) Beitrage zur Physiologie und Physik des Nerven, Arch. ges. Physiol., 109: 95

    Article  Google Scholar 

  • Hermann, L. (1905b) Lehrbuch der Phyisiologie, 13th ed., August Hirchwald, Berlin

    Google Scholar 

  • Hille, B. (2001) Ion Channels of Excitable Membranes, 3rd ed., Sinauer, Sunderland, MA

    Google Scholar 

  • Hodgkin, A. L. and Katz, B. (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (London), 108: 37

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London), 117: 500

    Google Scholar 

  • Huxley, A. F, and Stämpfli, R. (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibres, J. Physiol. 108: 315

    Google Scholar 

  • Kelly, J. P. (1991) The Neural Basis of Perception. In: Principle of Neural Science, 3rd ed., Kandel, R. K., Schwartz, J. H., Jessel, T. M. (Eds.), Appelton & Lange, Norwalk, CT

    Google Scholar 

  • Kupfermann, I. (1991) Learning and Memory. In: Principle of Neural Science, 3rd ed., Kandel, R. K., Schwartz, J. H., Jessel, T. M. (Eds.), Appelton & Lange, Norwalk, CT

    Google Scholar 

  • Koester, J. (1991) Membrane Potential. In: Principle of Neural Science, 3rd ed. Kandel, R. K., Schwartz, J. H., Jessel, T. M. (Eds.), Appelton & Lange, Norwalk, CT

    Google Scholar 

  • Malmivuo, J. and Plonsey, R. (1995) Bioelectromagnetism, Oxford University Press, New York

    Google Scholar 

  • Marmont, G. (1949) Studies on the axon membrane. I. A new method, J. Cell. Comp. Physiol, 34: 351

    Article  Google Scholar 

  • Sacconi, L., D’Amico, M., Vanzi, F., Biagiotti, T., Antolini, R., Olivotto M., Pavone, F. S. (2005) Second-harmonic generation sensitivity to transmembrane potential in normal and tumor cells, J. Biomed. Opt. 10: 024014

    Article  ADS  Google Scholar 

  • Sakmann, B. and Neher, E. (Eds.) (1995) Single Channel Recording, 2nd ed., Plenum, New York

    Google Scholar 

  • Schneider, M. F. and Chandler, W. K. (1973), Voltage dependent charge movement of skeletal muscle: a possible step in excitation contraction coupling, Nature, 242: 24

    Article  Google Scholar 

  • Stämpfli, R. (1954) Saltatory Conduction in Nerve, Physiol. Rev. 34: 101

    Google Scholar 

  • Stämpfli, R. (1983) The Ranvier node, past and future. A personal outlook after forty years of research, Cell. Mol. Life Sci., 39: 931

    Article  Google Scholar 

  • Tasaki, I. (2006) A note on the local current associated with the rising phase of a propagating impulse in nonmyelinated nerve fibers, Bull. Math. Biol., 68: 483

    Article  MathSciNet  Google Scholar 

  • Terakawa, S. and Hsu, K. (1991) Ionic currents of the nodal membrane underlying the fastest saltatory conduction in myelinated giant nerve fibers of the shrimp Penaeus japonicus, J. Neurobiol., 22: 342

    Article  Google Scholar 

  • Vasilescu, V. and Margineanu, D. G. (1982) Introduction to Neurobiophysics, Abacus, Tunbridges Wells, Kent

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2008). Electrophysiology and Excitability. In: Integrated Molecular and Cellular Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8268-9_6

Download citation

Publish with us

Policies and ethics