Skip to main content

Reaction, Diffusion and Dimensionality

  • Chapter
Integrated Molecular and Cellular Biophysics
  • 1441 Accesses

As we have seen so far, biological cells are complex systems containing many different molecular species that interact with one another to form molecular complexes or entirely different molecular species. Biomolecular interactions may be conveniently described as chemical reactions, and, in fact, the cell itself can be regarded as a complex biochemical reactor, in which many reactions occur simultaneously. Some examples have already been introduced in previous chapters (see, e.g., the self-association of amphiphiles into micelles and membranes), with others yet to follow.

In the next section, we will lay down the classical framework for describing reaction kinetics. We will first consider that biochemical reactions take place in an aqueous solution (e.g., the cell cytosol), assumed to be homogenous, and that the chemical reaction of interest does not interfere with others taking place simultaneously in the same cellular volume. Many of these approximations do seem to break down under most circumstances in biological cells. In the second part of this chapter, therefore, we will relax some of the approximations, and will make use of fractal concepts to incorporate deviations of biological systems from the Euclidian geometry of smooth objects, which may impinge on the reaction kinetics inside the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins, P. and de Paula, J. (2002) Atkins’ Physical Chemistry, 7th ed., Oxford University Press, New York

    Google Scholar 

  • Aon, M. A., Cortassa S. and O’Rourke, B. (2004) Percolation and criticality in a mitochondrial network, Proc. Natl. Acad. Sci. USA, 101: 4447

    Article  ADS  Google Scholar 

  • Barabási, A.-L. and Stanley, H. E. (1995) Fractal Concepts in Surface Growth, Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Bejan, A. (2006) Advanced Engineering Thermodynamics, 3rd ed., Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  • Blouin, A., Bolender, R. P. and Weibel, E. R. (1977) Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study, J. Cell Biol., 72: 441

    Article  Google Scholar 

  • Chechkin, A. V. Gorenflo, R. and Sokolov, I. M. (2005) Fractional diffusion in inhomogeneous media, J. Phys. A: Math. Gen., 38: L679

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Decker, J. M. (2007) http://microvet.arizona.edu/Courses/MIC419/Tutorials/antibody.html

  • Dewey, G. T. (1997) Fractals in Molecular Biophysics, Oxford University Press, New York

    MATH  Google Scholar 

  • Elias, H. (1949) A re-examination of the structure of the mammalian liver: II. The hepatic lobule and its relation to the vascular and biliary systems, Am. J. Anat., 85: 379

    Article  Google Scholar 

  • Forker, E. L. (1989) Hepatic transport of organic solutes, in: S. G. Schultz (ed.) Handbook of Physiology. A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts, Section 6, Vol. III, American Physiological Society, Bethesda, MD, p. 693

    Google Scholar 

  • Helmstaedt, K., Krappmann, S. and Braus, G.H. (2001) Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase, Microbiol. Mol. Biol. Rev., 65: 404

    Article  Google Scholar 

  • Hill, A. V. (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol. (Lond.), 40: iv

    Google Scholar 

  • Jackson, M. B. (2006) Molecular and cellular biophysics, Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2006) Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam

    MATH  Google Scholar 

  • Kopelman, R. (1988) Fractal reaction kinetics, Science, 241: 1620

    Article  ADS  Google Scholar 

  • Koshland, D. E., Némethy, D. E. and Filmer, D. (1966) Comparison of the experimental binding data and theoretical models in proteins containing subunits, Biochemistry, 5: 365

    Article  Google Scholar 

  • Kulish, V. V. and Lage, J. L. (2002) Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124: 803

    Article  Google Scholar 

  • Lefevre, J. (1983) Teleonomical optimisation of a fractal model of the pulmonary arterial bed, J. Theor. Biol., 102: 225

    Article  Google Scholar 

  • Liu, S. H. (1985) Fractal model for the ac response of a rough interface, Phys. Rev. Lett. 55: 529

    Article  ADS  Google Scholar 

  • Mandelbrot, B. B. (1999) The Fractal Geometry of Nature, W. H. Freeman, New York

    Google Scholar 

  • McNamee, J. E. (1991) Fractal perspectives in pulmonary physiology, J. Appl. Physiol., 71: 1

    Google Scholar 

  • Monod, J., Wyman, J. and Changeux, J. (1965) On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12: 88

    Article  Google Scholar 

  • O’Shaughnessy, B. and Procaccia, I. (1985) Analytical solutions for diffusion on fractal objects, Phys. Rev. Lett., 54: 455

    Article  ADS  Google Scholar 

  • Popescu, A., Miron, S., Blouquit, Y., Duchambon, P., Christova, P. and Craescu, C. T. (2003) Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin, J. Biol. Chem., 278: 40252

    Article  Google Scholar 

  • Raicu, V., Saibara, T., Enzan, H. and Irimajiri, A. (1998) Dielectric properties of rat liver in vivo: analysis by modeling hepatocytes in the tissue architecture, Bioelectrochem. Bioenerg., 47: 333

    Article  Google Scholar 

  • Raicu, V., Sato, T. and Raicu, G. (2001) Non-Debye dielectric relaxation in biological structures arises from their fractal nature, Phys. Rev. E, 64: 021916

    Article  ADS  Google Scholar 

  • Sahimi, M. (1994) Applications of Percolation Theory, Taylor & Francis, London

    Google Scholar 

  • Schnell, S. and Turner, T. E. (2004) Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws, Prog. Biophys. Mol. Biol., 85: 235

    Article  Google Scholar 

  • Shlesinger, M. F. and West, B. J. (1991) Complex fractal dimension of the bronchial tree, Phys. Rev. Lett., 67: 2106

    Article  ADS  Google Scholar 

  • Sierpinski, W. (1916) Sur une courbe cantorienne qui contient une image biunivoque et continue de tout courbe donnée, Comptes Rendus ( Paris ) , 162: 629

    Google Scholar 

  • Turcotte, D. L. and Newman, W. I. (1996) Symmetries in geology and geophysics, Proc. Natl. Acad. Sci. USA, 93: 14295

    Article  ADS  Google Scholar 

  • Turcotte, D. L. Pelletier, J. D. and Newman W. I. (1998) Networks with side branching in biology, J. Theor. Biol., 193: 577

    Article  Google Scholar 

  • Weibel, E. R. (1991) Fractal geometry: a design principle for living organisms, Am. J. Physiol., 261: L361

    Google Scholar 

  • Weibel, E. R. and Paumgartner, D. (1978) Integrated stereological and biochemical studies on hepatocytic membranes: II. Correction of section thickness effect on volume and surface density estimates, J. Cell Biol., 77: 584

    Article  Google Scholar 

  • Weibel, E. R., Staubli, W., Gnagi, H. R. and Hess, F. A. (1969) Correlated morphometric and biochemical studies on the liver cell: I. Morphometric model, stereologic methods, and normal morphometric data for rat liver, J. Cell Biol., 42: 68

    Article  Google Scholar 

  • Weiss, J. N. (1997) The Hill equation revisited: uses and misuses, FASEB J., 11: 835

    Google Scholar 

  • Wells, J. W. (1992) Analysis and interpretation of binding at equilibrium, in: E. C. Hulme (ed.) Receptor-Ligand Interactions: A Practical Approach, Oxford University Press, Oxford, p. 289

    Google Scholar 

  • West, G. B., Brown, J. H. and Enquist, B. J. (1997) A general model for the origin of allometric scaling in biology, Science, 276: 122

    Article  Google Scholar 

  • West, G. B., Brown, J. H. and Enquist, B. J. (1999) A general model for the structure and of allometry of plant vascular systems, Nature, 400: 664

    Article  ADS  Google Scholar 

  • Witten, T. A. and Sander, L. M. (1981) Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett., 47: 1400

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2008). Reaction, Diffusion and Dimensionality. In: Integrated Molecular and Cellular Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8268-9_5

Download citation

Publish with us

Policies and ethics