Hydrogeophysical Techniques for Site Characterization and Monitoring: Recent Advances in Ground-penetrating Radar

  • Sébastien Lambot
  • Evert Slob
  • Marnik Vanclooster
  • Johan A. Huisman
  • Harry Vereecken
Part of the NATO Science for Peace and Security Series book series (NAPSC)

We introduce ground penetrating radar (GPR) basic principles and applications in environmental engineering, with emphasis on quantitative methods for soil water content estimation. The main limitations of these techniques are discussed. Then, we summarize our recent advances on the development and use of advanced off-ground GPR for shallow subsurface characterization. The proposed method is based on full-waveform forward and inverse modelling of the radar signal, thereby maximising inherently information retrieval capabilities from the radar measurements.

Keywords

agricultural research contamination of surface waters ecosystems environmental research ground-penetrating radar hydro-geophysical hydrological 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. al Hagrey, S.A. and Müller, C., 2000. GPR study of pore water content and salinity in sand. Geophysical Prospecting, 48: 63-85.Google Scholar
  2. Alumbaugh, D., Chang, P., Paprocki, L., Brainard, J., Glass, R.J. and Rautman, C.A., 2002. Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability. Water Resources Research, 38: 1309.CrossRefGoogle Scholar
  3. Annan, A.P., 2002. GPR - History, Trends, and Future Developments. Subsurface Sensing Technologies and Applications, 3(4): 253-270.CrossRefGoogle Scholar
  4. Annan, A.P., 2005. GPR methods for hydrogeological studies. In: Y.R.a.S.S. Hubbard (Editor), Hydrogeophysics, Springer, New York, pp. 532.Google Scholar
  5. Binley, A., Winship, P., Middleton, R., Pokar, M. and West, J., 2001. High-resolution char-acterization of vadose zone dynamics using cross-borehole radar. Water Resources Research, 37 (11): 2639-2652.CrossRefGoogle Scholar
  6. Boll, J., van Rijn, R.P.G., Weiler, K.W., Steenhuis, T.S., Daliparthy, J. and Herbert, S.J., 1996. Using ground penetrating radar to detect layers in a sandy field soil. Geoderma, 70: 117-132.CrossRefGoogle Scholar
  7. Bouma, J., Stoorvogel, J., van Alphen, B.J. and Booltink, H.W.G., 1999. Pedology, Precision Agriculture, and the Changing Paradigm of Agricultural Research. Soil Science Society of America Journal, 63: 1763-1768.Google Scholar
  8. Brewster, M.L. and Annan, A.P., 1994. Ground penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar. Geophysics, 59: 1211-1221.CrossRefGoogle Scholar
  9. Bristow, C.S., Bailey, S.D. and Lancaster, N., 2000. The sedimentary structure of linear sand dunes. Nature, 406(6791): 56-59.CrossRefGoogle Scholar
  10. Cai, J. and Mc-Mechan, G.A., 1995. Ray-based synthesis of bistatic ground penetrating radar profiles. Geophysics, 60: 87-96.CrossRefGoogle Scholar
  11. Cassiani, G. and Binley, A., 2005. Modeling unsaturated flow in a layered formation under quasi-steady state conditions using geophysical data constraints. Advances in Water Resources, 28 (5): 467-477.CrossRefGoogle Scholar
  12. Chanzy, A., Tarussov, A., Judge, A. and Bonn, F., 1996. Soil water content determination using digital ground penetrating radar. Soil Science Society of America Journal, 60: 1318-1326.Google Scholar
  13. Daniels, D.J., 2004. Ground Penetrating Radar, 2nd Edition. The Inst. Electrical Eng., London. Darayan, S., Liu, C., Shen, L.C. and Shattuck, D., 1998. Measurement of electrical properties of contaminated soils. Geophysical Prospecting, 46: 477-488.Google Scholar
  14. Davis, J.L. and Annan, A.P., 1989. Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37: 531-551.CrossRefGoogle Scholar
  15. de Rosnay, P. et al., 2006. SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sensing of Environment, 102(3-4): 377-389.Google Scholar
  16. Dobson, M.C. and Ulaby, F.T., 1986. Active microwave soil moisture research. IEEE Trans-actions on Geoscience and Remote Sensing, 24: 23-36.CrossRefGoogle Scholar
  17. Du, S. and Rummel, P., 1994. Reconnaissance studies of moisture in the subsurface with GPR. In: M.T.v.G.a.F.J.L.a.L. Wu (Editor), Proceedings of the Fifth International Conference on Ground Penetrating Radar, Waterloo cent. for Groundwater Res., Univ. of Waterloo, Waterloo, Ont., Canada, pp. 1241-1248.Google Scholar
  18. Famiglietti, J.S., Devereaux, J.A., Laymon, C.A., Tsegaye, T., Houser, P.R., Jackson, T.J., Graham, S.T., Rodell, M. and van Oevelen, P.J., 1999. Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resources Research, 35(6): 1839-1851.CrossRefGoogle Scholar
  19. Galagedara, L.W., Parkin, G.W. and Redman, J.D., 2003. An analysis of the GPR direct ground wave method for soil water content measurement. Hydrological Processes, 17: 3615-3628.CrossRefGoogle Scholar
  20. Galagedara, L.W., Parkin, G.W., Redman, J.D. and Endres, A.L., 2005a. Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage. Journal of Hydrology, 301: 182-197.CrossRefGoogle Scholar
  21. Galagedara, L.W., Redman, J.D., Parkin, G.W., Annan, A.P. and Endres, A.L., 2005b. Numerical modeling of GPR to determine the direct ground wave sampling depth. Vadose Zone Journal, 4: 1096-1106.CrossRefGoogle Scholar
  22. Garambois, S., Sénéchal, P. and Perroud, H., 2002. On the use of combined geophysical methods to assess water content and water conductivity of near-surface formations. Journal of Hydrology, 259: 32-48.CrossRefGoogle Scholar
  23. Gentili, G.G. and Spagnolini, U., 2000. Electromagnetic inversion in monostatic ground penetrating radar: TEM horn calibration and application. IEEE Transactions on Geoscience and Remote Sensing, 38(4): 1936-1946.CrossRefGoogle Scholar
  24. Gloaguen, E., Couteau, M., Marcotte, D. and Chapuis, R., 2001. Estimation of hydraulic conduc-tivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data. Journal of Applied Geophysics, 47: 135-152.CrossRefGoogle Scholar
  25. Goodman, D., 1994. Ground penetrating radar simulation in engineering and archeology. Geophysics, 59: 224-232.CrossRefGoogle Scholar
  26. Greaves, R.J., Lesmes, D.P., Lee, J.M. and Toksov, M.N., 1996. Velocity variations and water content estimated from multi-offset, ground-penetrating radar. Geophysics, 61: 683-695.CrossRefGoogle Scholar
  27. Grote, K., Hubbard, S.S. and Rubin, Y., 2003. Field-scale estimation of volumetric water content using GPR ground wave techniques. Water Resources Research, 39(11): 1321, doi:10.1029/2003WR002045.CrossRefGoogle Scholar
  28. Hubbard, S., Chen, J., Williams, K., Peterson, J. and Rubin, Y., 2005. Environmental and agricultural applications of GPR. In: S.L.a.A.G. Gorriti (Editor), Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, Delft University of Technology, Delft, The Netherlands, pp. 45-49.Google Scholar
  29. Hubbard, S.S., Rubin, Y. and Majer, E., 1997. Ground-penetrating-radar-assisted saturation and permeability estimation in bimodal systems. Water Resources Research, 33(5): 971-990.CrossRefGoogle Scholar
  30. Huisman, J.A., Hubbard, S.S., Redman, J.D. and Annan, A.P., 2003. Measuring soil water content with ground penetrating radar: A review. Vadose Zone Journal, 2: 476-491.CrossRefGoogle Scholar
  31. Huisman, J.A., Snepvangers, J.J.J.C., Bouten, W. and Heuvelink, G.B.M., 2002. Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry. Journal of Hydrology, 269: 194-207.CrossRefGoogle Scholar
  32. Huisman, J.A., Sperl, C., Bouten, W. and Verstraten, J.M., 2001. Soil water content measure-ments at different scales: accuracy of time domain reflectometry and ground penetrating radar. Journal of Hydrology, 245: 48-58.CrossRefGoogle Scholar
  33. Huyer, W. and Neumaier, A., 1999. Global optimization by multilevel coordinate search. Journal of Global Optimization, 14(4): 331-355.CrossRefGoogle Scholar
  34. Jackson, T.J., Schmugge, J. and Engman, E.T., 1996. Remote sensing applications to hydrology: soil moisture. Hydrological Sciences, 41(4): 517-530.CrossRefGoogle Scholar
  35. Kemna, A., Binley, A., Ramirez, A. and Daily, W., 2000. Complex resistivity tomography for environmental applications. Chemical Engineering Journal, 77(1-2): 11-18.CrossRefGoogle Scholar
  36. Kemna, A., Vanderborght, J., Kulessa, B. and Vereecken, H., 2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3-4): 125-146.CrossRefGoogle Scholar
  37. Kirchmann, H. and Thorvaldsson, G., 2000. Challenging targets for future agriculture. European Journal of Agronomy, 12: 145-161.CrossRefGoogle Scholar
  38. Knight, R., 2001. Ground penetrating radar for environmental applications. Annual Review of Earth and Planetary Sciences, 29: 229-255.CrossRefGoogle Scholar
  39. Kowalsky, M.B., Finsterle, S., Peterson, J., Hubbard, S., Rubin, Y., Majer, E., Ward, A. and Gee, G., 2005. Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resources Research, 41: W11425, doi:10.1029/2005WR004237.CrossRefGoogle Scholar
  40. Kung, K.J.S. and Lu, Z.B., 1993. Using ground penetrating radar to detect layers of discontinuous dielectric constant. Soil Science Society of America Journal, 57: 335-340.CrossRefGoogle Scholar
  41. Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E., 1998. Convergence properties of the Nelder-Mead Simplex method in low dimensions. Siam Journal on Optimization, 9(1): 112-147.CrossRefGoogle Scholar
  42. Lambot, S., Antoine, M., van den Bosch, I., Slob, E.C. and Vanclooster, M., 2004a. Electro-magnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties. Vadose Zone Journal, 3(4): 1072-1081.CrossRefGoogle Scholar
  43. Lambot, S., Antoine, M., Vanclooster, M. and Slob, E.C., 2006a. Effect of soil roughness on the inversion of off-ground monostatic GPR signal for noninvasive quantification of soil properties. Water Resources Research, 42: W03403, doi:10.1029/2005WR004416.CrossRefGoogle Scholar
  44. Lambot, S., Javaux, M., Hupet, F. and Vanclooster, M., 2002. A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties. Water Resources Research, 38(11): 1224, doi:10.1029/2001WR001224.CrossRefGoogle Scholar
  45. Lambot, S., Rhebergen, J., van den Bosch, I., Slob, E.C. and Vanclooster, M., 2004b. Measuring the soil water content profile of a sandy soil with an off-ground monostatic ground pene-trating radar. Vadose Zone Journal, 3(4): 1063-1071.CrossRefGoogle Scholar
  46. Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B., Scheers, B. and Vanclooster, M., 2004c. Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain. Water Resources Research, 40: W04205, doi:10.1029/2003WR002095.CrossRefGoogle Scholar
  47. Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B. and Vanclooster, M., 2004d. Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. IEEE Transactions on Geoscience and Remote Sensing, 42: 2555-2568.CrossRefGoogle Scholar
  48. Lambot, S., Slob, E.C., Vanclooster, M. and Vereecken, H., 2006b. Closed loop GPR data inversion for soil hydraulic and electric property determination. Geophysical Research Letters, 33: L21405, doi:10.1029/2006GL027906.CrossRefGoogle Scholar
  49. Lambot, S., van den Bosch, I., Stockbroeckx, B., Druyts, P., Vanclooster, M. and Slob, E.C., 2005. Frequency dependence of the soil electromagnetic properties derived from ground-penetrating radar signal inversion. Subsurface Sensing Technologies and Applications, 6: 73-87.CrossRefGoogle Scholar
  50. Lambot, S., Weihermüller, L., Huisman, J.A., Vereecken, H., Vanclooster, M. and Slob, E.C., 2006c. Analysis of air-launched ground-penetrating radar techniques to measure the soil surface water content. Water Resources Research, 42: W11403, doi:10.1029/2006WR005097.CrossRefGoogle Scholar
  51. Lazaro-Mancilla, O. and Gomez-Treviño, E., 2000. Ground penetrating radar in 1-D: an approach for the estimation of electrical conductivity, dielectric permittivity and magnetic permeability. Journal of Applied Geophysics, 43: 199-213.CrossRefGoogle Scholar
  52. Lesch, S.M., Herrero, J. and Rhoades, J.D., 1998. Monitoring for temporal changes in soil salinity using electromagnetic induction techniques. Soil Science Society of America Journal, 62: 232-242.CrossRefGoogle Scholar
  53. Linde, N., Binley, A., Tryggvason, A., Pedersen, L.B. and Révil, A., 2006. Improved hydro-geophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42: W12404, doi:10.1029/2006WR005131.CrossRefGoogle Scholar
  54. Lopera, O., Milisavljevic, N. and Lambot, S., 2007a. Clutter reduction in GPR measurements for detecting shallow buried landmines: a Colombian case study. Near Surface Geophysics, 5(1): 57-64.Google Scholar
  55. Lopera, O., Slob, E.C., Milisavljevic, N. and Lambot, S., 2007b. Filtering soil surface and antenna effects from GPR data to enhance landmine detection. IEEE Transactions on Geoscience and Remote Sensing, 45(3): 707-717.CrossRefGoogle Scholar
  56. Lunt, I.A., Hubbard, S.S. and Rubin, Y., 2005. Soil moisture content estimation using ground-penetrating radar reflection data. Journal of Hydrology, 307(1-4): 254-269.CrossRefGoogle Scholar
  57. Mualem, Y. and Friedman, S.P., 1991. Theoretical predictions of electrical conductivity in saturated and unsaturated soil. Water Resources Research, 27: 2771-2777.CrossRefGoogle Scholar
  58. Nakashima, Y., Zhou, H. and Sato, M., 2001. Estimation of groundwater level by GPR in an area with multiple ambiguous reflections. Journal of Applied Geophysics, 47: 241-249.CrossRefGoogle Scholar
  59. Plug, W.J., Slob, E., Bruining, J. and Tirado, L.M.M., 2007. Simultaneous measurement of hysteresis in capillary pressure and electric permittivity for multiphase flow through porous media. Geophysics, 72(3): A41-A45.CrossRefGoogle Scholar
  60. Plug, W.J., Slob, E., van Turnhout, J. and Bruining, J., 2007. Capillary pressure as a unique function of electric permittivity and water saturation. Geophysical Research Letters, 34(13): 5.CrossRefGoogle Scholar
  61. Redman, J.D., Davis, J.L., Galagedara, L.W. and Parkin, G.W., 2002. Field studies of GPR air launched surface reflectivity measurements of soil water content. In: L. Steven Koppenjan and Hua (Editor), Proceedings of the Ninth International Conference on Ground Penetrating Radar, Santa Barbara, CA., USA, pp. SPIE 4758: 156-161.CrossRefGoogle Scholar
  62. Rhoades, J.D., Raats, P.A.C. and Prather, R.J., 1976. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Science Society of America Journal, 40: 651-655.CrossRefGoogle Scholar
  63. Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D. and Friedman, S.P., 2003. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal, 2: 444-475.CrossRefGoogle Scholar
  64. Rucker, D.F. and Ferre, T.P.A., 2005. Automated water content reconstruction of zero-offset borehole ground penetrating radar data using simulated annealing. Journal of Hydrology, 309 (1-4): 1-16.CrossRefGoogle Scholar
  65. Rucker, D.F. and Ferré, T.P.A., 2004. Parameter estimation for soil hydraulic properties using zero-offset borehole radar: Analytical method. Soil Science Society of America Journal, 68 (5): 1560-1567.CrossRefGoogle Scholar
  66. Sasaki, Y.,2001. Full3-D inversion of electromagnetic data on PC. Journal of Applied Geophysics, 46: 45-54.CrossRefGoogle Scholar
  67. Schmalholz, J., Stoffregen, H., Kemna, A. and Yaramanci, U., 2004. Imaging of water content distributions inside a lysimeter using GPR tomography. Vadose Zone Journal, 3: 1106-1115.CrossRefGoogle Scholar
  68. Seneviratne, S.I., Luthi, D., Litschi, M. and Schar, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108): 205-209.CrossRefGoogle Scholar
  69. Serbin, G. and Or, D., 2003. Near-surface water content measurements using horn antenna radar: methodology and overview. Vadose Zone Journal, 2: 500-510.CrossRefGoogle Scholar
  70. Serbin, G. and Or, D., 2004. Ground-penetrating radar measurement of soil water content dynamics using a suspended horn antenna. IEEE Transactions on Geoscience and Remote Sensing, 42: 1695-1705.CrossRefGoogle Scholar
  71. Slob, E.C. and Fokkema, J., 2002. Coupling effects of two electric dipoles on an interface. Radio Science, 37(5): 1073, doi:10.1029/2001RS2529.CrossRefGoogle Scholar
  72. Spagnolini, U., 1997. Permittivity measurements of multilayered media with monostatic pulse radar. IEEE Transactions on Geoscience and Remote Sensing, 35: 454-463.CrossRefGoogle Scholar
  73. Stafford, J.V., 2000. Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76 (3): 267-275.CrossRefGoogle Scholar
  74. Sudduth, K.A., Drummond, S.T. and Kitchen, N.R., 2001. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture, 31: 239-264.CrossRefGoogle Scholar
  75. Tabbagh, A., Camerlynck, C. and Cosenza, P., 2000. Numerical modeling for investigating the physical meaning of the relationship between relative dielectric permittivity and water content of soils. Water Resources Research, 36: 2771-2776.CrossRefGoogle Scholar
  76. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature, 418(6898): 671-677.CrossRefGoogle Scholar
  77. Topp, G., Davis, J.L. and Annan, A.P., 1980. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources Research, 16: 574-582.CrossRefGoogle Scholar
  78. Tsoflias, G.P., Halihan, T. and Sharp, J.M., 2001. Monitoring pumping test response in a fractured aquifer using ground-penetrating radar. Water Resources Research, 37(5): 1221-1229.CrossRefGoogle Scholar
  79. van Overmeeren, R.A., Sariowan, S.V. and Gehrels, J.C., 1997. Ground penetrating radar for determining volumetric soil water content: results of comparative measurements at two test sites. Journal of Hydrology, 197: 316-338.CrossRefGoogle Scholar
  80. Vanderborght, J., Kemna, A., Hardelauf, H. and Vereecken, H., 2005. Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: A synthetic case study. Water Resources Research, 41(6): 23.CrossRefGoogle Scholar
  81. Vaughan, D.G., Corr, H.F.J., Doake, C.S.M. and Waddington, E.D., 1999. Distortion of isochronous layers in ice revealed by ground-penetrating radar. Nature, 398(6725): 323-326.CrossRefGoogle Scholar
  82. Vellidis, G., Smith, M.C., Thomas, D.L. and Asmussen, L.E., 1990. Detecting wetting front movement in a sandy soil with ground penetrating radar. Trans. ASAE, 33: 1867-1874.Google Scholar
  83. Weiler, K.W., Steenhuis, T.S., Boll, J. and Kung, K.J.S., 1998. Comparison of ground penetrating radar and time domain reflectometry as soil water sensors. Soil Science Society of America Journal, 62: 1237-1239.CrossRefGoogle Scholar
  84. Windsor, C., Capineri, L., Falorni, P., Matucci, S. and Borgioli, G., 2005. The estimation of buried pipe diameters using ground penetrating radar. Insight, 47(7): 394-399.CrossRefGoogle Scholar
  85. Yelf, R., 2004. Where is true time-zero? In: E.C.S.a.A.Y.a.J. Rhebergen (Editor), Proceedings of the Tenth International Conference on Ground Penetrating Radar, Delft University of Technology, Delft, The Netherlands, pp. 279-282.Google Scholar
  86. Yoder, R.E., Freeland, R.S., Ammons, J.T. and Leonard, L.L., 2001. Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals. Journal of Applied Geophysics, 47: 251-259.CrossRefGoogle Scholar
  87. Zhang, N., Wang, M. and Wang, N., 2002. Precision agriculture: a worldwide overview. Computers and Electronics in Agriculture, 36: 113-132.CrossRefGoogle Scholar
  88. Zhou, C., Liu, L. and Lane, J.W., 2001. Nonlinear inversion of borehole-radar tomography data to reconstruct velocity and attenuation distribution in earth materials. Journal of Applied Geophysics, 47: 271-284.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Sébastien Lambot
    • 1
  • Evert Slob
    • 2
  • Marnik Vanclooster
    • 1
  • Johan A. Huisman
    • 3
  • Harry Vereecken
    • 3
  1. 1.Université catholique de LouvainBelgium
  2. 2.Delft University of TechnologyNetherlands
  3. 3.Forschungszentrum JölichGermany

Personalised recommendations