Skip to main content

Equilibrium and Dynamical Path Integral Methods in Bacterial Photosynthesis

  • Chapter
Biophysical Techniques in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 26))

Classical molecular dynamics simulations have provided a wealth of information on processes in biological systems. In spite of the spectacular success and the insights gained from such simulations, processes involving electron or exciton transfer are inherently quantum mechanical and thus not amenable to a classical description. This chapter focuses on the use of path integral methods for simulating the equilibrium and dynamical properties of charged particles in dissipative environments.

Feynman’s path integral theory is an exact formulation of time-dependent quantum mechanics and quantum statistical mechanics that circumvents the use of wave functions, whose storage requirements are prohibitive for systems of more than a few atoms. The calculation of thermal equilibrium properties in non-fermionic systems is possible with the well-established path integral Monte Carlo method. Dynamical processes involve multidimensional integrals of rapidly oscillating functions; Monte Carlo methods converge extremely slowly in such cases, and thus fully quantum mechanical simulations of real-time processes generally remain out of reach. In the case of electron (or exciton) transfer processes, the so-called linear response approximation makes it possible to replace the vast majority of nuclear coordinates by an effective dissipative environment of harmonic oscillators. This simplifi cation allows a fully quantum mechanical treatment of the dynamics using an iterative decomposition of the path integral developed in the mid-1990s.

Applications of these methods to determine the exciton coherence length in the B850 ring of the light harvesting complex (LH2) and the mechanism of primary charge separation in the photosynthetic reaction center are reviewed. Path integral calculations, along with a visual inspection of statistically signifi cant paths, led to the conclusion that the exciton is delocalized over two to three chlorophyll monomers at room temperature. Iterative evaluation of the real-time path integral for a three-state model comprising the excited special pair, the reduced accessory bacteriochlorophyll, and the reduced bacteriopheophytin, offers evidence in support of the sequential mechanism, where the electron is fi rst transferred to the accessory chlorophyll.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden RG, Parson WW, Chu ZT and Warshel A (1995) Calculations of electrostatic energies in photosynthetic reaction centers. J Am Chem Soc 117: 12284-12298

    CAS  Google Scholar 

  • Arnett DC, Kumble R, Visschers RW, Dutton PL, Hochstrasser RM and Scherer NF (1998) Ultrafast studies of exciton dynamics in light-harvesting dimers. In: Scherer NF and Hicks JM (eds) Laser Techniques for Condensed Phase and Biological Systems, pp 244-255. SPIE Proc Vol 3273. International Society for Optical Engineering, Bellingham

    Google Scholar 

  • Bandrauk AD and Shen H (1991) Improved exponential split operator method for solving the time-dependent Schrödinger equation. Chem Phys Lett 176: 428-432

    CAS  Google Scholar 

  • Binder K and Heermann DW (1988) Monte Carlo Simulation in Statistical Physics. Springer-Verlag, Berlin

    Google Scholar 

  • Bixon M, Jortner J, Michel-Beyerle ME, Ogrodnik A and Lersch W (1987) The role of the accessory bacteriochlorophyll in reaction centers of photosynthetic bacteria: Intermediate acceptor in the primary electron transfer. Chem Phys Lett 140: 626-630

    CAS  Google Scholar 

  • Bixon M, Jortner J and Michel-Beyerle ME (1991) On the mechanism of the primary charge separation in bacterial photosynthesis. Biochim Biophys Acta 1056: 301-315

    CAS  Google Scholar 

  • Bradforth SE, Jimenez R, van Mourik F, van Grondelle R and Fleming GR (1995) Excitation transfer in the core light-harvesting complex (LH-1) of Rhodobacter sphaeroides: An ultrafast fluorescence depolarization and annihilation study. J Phys Chem 99: 16179-16191

    CAS  Google Scholar 

  • Breton J, Martin JL, Migus A, Antonetti A and Orszag A (1986a) Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosyn-thetic bacterium Rhodopseudomonas viridis. Proc Natl Acad Sci USA 83: 5121-5125

    CAS  Google Scholar 

  • Breton J, Martin JL, Petrich J, Migus A and Antonetti A (1986b) The absence of a spectroscopically resolved intermediate state P+B- in bacterial photosynthesis. FEBS Lett 209: 37-43

    CAS  Google Scholar 

  • Breton J, Martin J-L, Fleming GR and Lambry J-C (1988) Low temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photosynthetic purple bacteria. Biochemistry 27: 9276-8284

    Google Scholar 

  • Caldeira AO and Leggett AJ (1983) Path integral approach to quantum Brownian motion. Physica A 121: 587-616

    Google Scholar 

  • Ceperley DM and Pollock EL (1986) Path integral computation of the low-temperature properties of liquid 4He. Phys Rev Lett 56: 351-354

    CAS  PubMed  Google Scholar 

  • Chachisvilis M, KĂĽhn O, Pullerits T and Sundström V (1997) Excitons in photosynthetic purple bacteria: Wavelike motion or incoherent hopping? J Phys Chem 101: 7275-7283

    CAS  Google Scholar 

  • Chan C-K, DiMagno TJ, Chen LX-Q, Norris JR and Fleming GR (1991) Mechanism of the initial charge separation in bacterial photosynthetic reaction centers. Proc Natl Acad Sci USA 88: 11202-11206

    CAS  PubMed  Google Scholar 

  • Chandler D (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New York

    Google Scholar 

  • Chandler D and Wolynes PG (1981) Exploiting the isomorphism between quantum theory and the classical statistical mechanics of polyatomic fluids. J Chem Phys 74:4078-4095

    CAS  Google Scholar 

  • Chidsey CED, Takiff L, Goldstein RA and Boxer SG (1985) Effect of magnetic fields on the triplet state lifetime in photosynthetic reaction centers: Evidence for thermal repopulation of the initial radical pair. Proc Natl Acad Sci USA 82: 6850-6854

    CAS  PubMed  Google Scholar 

  • Cho M and Silbey R (1995) Nonequilibrium photoinduced electron transfer. J Chem Phys 103: 595-606

    CAS  Google Scholar 

  • Coalson RD, Freeman DL and Doll JD (1989) Cumulant methods and short-time propagators. J Chem Phys 91: 4242-4248

    CAS  Google Scholar 

  • Cory MG, Zerner MC, Hu X and Schulten K (1998) Electronic excitations in aggregates of bacteriochlorophylls. J Phys Chem 102:650

    Google Scholar 

  • Creighton S, Hwang JK, Warshel E, Parson WW and Norris J (1988) Simulating the dynamics of the primary charge separation process in bacterial photosynthesis. Biochemistry 27: 774-781

    CAS  Google Scholar 

  • De Raedt H and De Raedt B (1983) Applications of the generalized Trotter formula. Phys Rev A 28: 3575-3580

    Google Scholar 

  • Deisenhofer J and Norris JR (eds) (1993) The photosynthetic reaction center. Academic Press, New York

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane-protein complex — Electron density map at 3Ă… resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385-398

    CAS  PubMed  Google Scholar 

  • Doll JD and Freeman DL (1988) Stationary phase Monte Carlo methods. Adv Chem Phys 73: 289-304

    Google Scholar 

  • Doll JD, Freeman DL and Gillan MJ (1988): Stationary phase Monte Carlo methods: An exact formulation. Chem Phys Lett 143: 277-283

    CAS  Google Scholar 

  • Doll JD, Freeman DL and Beck TL (1990) Equilibrium and dynamical Fourier path integral methods. Adv Chem Phys 78: 61-127

    CAS  Google Scholar 

  • Egger R and Mak CH (1994) Dissipative three-state system and the primary electron transfer in the bacterial photosynthetic reaction center. J Phys Chem 98: 9903-9918

    CAS  Google Scholar 

  • Egger R, Mak CH and Weiss U (1994) Rate concept and retarted master equations for dissipative tight-binding models. Phys Rev E 50: R655-R658

    Google Scholar 

  • Feynman RP (1948) Space-time approach to non-relativistic quantum mechanics. Rev Mod Phys 20: 367-387

    Google Scholar 

  • Feynman RP (1972) Statistical Mechanics. Addison-Wesley, Redwood City

    Google Scholar 

  • Feynman RP and Hibbs AR (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New York

    Google Scholar 

  • Feynman RP and Vernon J (1963) The theory of a general quantum system interacting with a linear dissipative system. Ann Phys 24: 118-173

    Google Scholar 

  • Filinov VS (1986) Calculation of the Feynman integrals by means of the Monte Carlo method. Nucl Phys B 271: 717-725

    Google Scholar 

  • Fleming GR and Grondelle RV (1994) The primary steps of photosynthesis. Phys Today Feb 1994: 49-55

    Google Scholar 

  • Fleming GR, Martin JL and Breton J (1988) Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications. Nature 333: 190-192

    CAS  Google Scholar 

  • Frank HA and Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63: 257-264

    CAS  PubMed  Google Scholar 

  • Freiberg A, Jackson JA, Lin S and Woodbury NW (1998) Subpicosecond pump-supercontinuum probe spectroscopy of LH2 photosynthetic antenna proteins at low temperature. J Phys Chem 102: 4372-4380

    CAS  Google Scholar 

  • Fujiwara Y, Osborn TA and Wilk SFJ (1982) Wigner-Kirkwood expansions. Phys Rev A 25: 14-34

    Google Scholar 

  • Gehlen JN (1995) The Effect of High and Low Frequency Polarization Modes on the Kinetics of Electron Transfer. Ph. D. Thesis, University of California, Berkeley

    Google Scholar 

  • Gehlen J, Marchi M and Chandler D (1994) Dynamics affecting the primary charge transfer in photosynthesis. Science 263: 499-502

    CAS  PubMed  Google Scholar 

  • Glasner M, Yevick D and Hermansson B (1991) Generalized propagation formulas of arbitrarily high order. J Chem Phys 95: 8266-8272

    Google Scholar 

  • Gnanakaran S, Haran G, Kumble R and Hochstrasser RM (1999) Resonance energy transfer. In: Andrews DL, Demidov AA (eds) Resonance Energy Transfer, pp 308-365. John Wiley and Sons, Chichester

    Google Scholar 

  • Goldstein RA, Takiff L and Boxer SG (1988) Energetics of initial charge separation in bacterial photosynthesis: the triplet decay rate in very high magnetic fields. Biochim Biophys Acta 934: 253-263

    CAS  Google Scholar 

  • Hess S, Chachisvilis M, Timpmann K, Jones MR, Fowler GJS, Hunter CN and Sundström V (1995) Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc Natl Acad Sci USA 92: 12333-12337

    CAS  PubMed  Google Scholar 

  • Hoffman DK and Kouri DJ (1992) Distributed approximating function theory: A general, fully quantum approach to wave propagation. J Phys Chem 96: 1179-1184

    CAS  Google Scholar 

  • Hofmann C, Ketelaars M, Matsushita M, Michel H, Aartsma TJ and Koehler J (2003) Single-molecule study of the electronic couplings in a circular array of molecules: Light harvesting-2 complex from Rhodospirillum molischianum. Phys Rev Lett 90: 013004

    PubMed  Google Scholar 

  • Holten D, Hoganson C, Windsor MW, Schenck CC, Parson WW, Migus A, Fork RL and Shank CV (1980) Subpicosecond and picosecond studies of electron transfer intermediates in Rho-dopseudomonas sphaeroides reaction center. Biochim Biophys Acta 592: 461-477

    CAS  PubMed  Google Scholar 

  • Hu X, Ritz T, Damjanovic A and Schulten K (1997) Pigment organization and transfer of electronic excitation in the photosynthetic unit of purple bacteria. J Phys Chem 101: 3854-3871

    CAS  Google Scholar 

  • Hu X, Xu D, Hamer K, Schulten K, Koepke J and Michel H (1995) Predicting the structure of the light harvesting complex II of Rhodospirillum molischianum. Protein Science 4: 1670-1682

    CAS  PubMed  Google Scholar 

  • Hu Y and Mukamel S (1989a) Superexchange and electron transfer in the photosynthetic reaction center. Chem Phys Lett 160: 410-416

    CAS  Google Scholar 

  • Hu Y and Mukamel S (1989b) Tunneling versus sequential long range electron transfer: analogy with pump-probe spectroscopy. J Chem Phys 91: 6973-6988

    CAS  Google Scholar 

  • Huber H, Meyer M, Nagele T, Hartl I, Scheer H, Zinth W and Wachtveitl J (1995) Primary photosynthesis in reaction centers containing four different types of electron acceptors at site HA. Chem Phys 197: 297-305

    CAS  Google Scholar 

  • Jang S and Silbey RJ (2003) Single complex line shapes of the B850 band of LH2. J Chem Phys 118: 9324-9336

    CAS  Google Scholar 

  • Jimenez R, Dikshit SN, Bradforth SE and Fleming GR (1996) Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J Phys Chem 100: 6825-6834

    CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Aartsma TJ, Nozawa T and Amesz J (1996) Energy transfer and exciton coupling in isolated B800-850 complexes of the photosynthetic purple sulfur bacterium Chromatium tepidum. The effect of structural symmetry on bacteriochlorophyll excited states. J Phys Chem 100: 2438-2442

    CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Permentier H, Aartsma TJ and Amesz J (1997) Exciton coherence and energy transfer in the LH2 antenna complex of Rhodopseudomonas acidophila at low temperature. J Phys Chem 101: 8369-8374

    CAS  Google Scholar 

  • Kono H, Takasaka A and Lin SH (1988) Monte Carlo calculation of the quantum partition function via path integral formulations. J Chem Phys 88: 6390-6398

    CAS  Google Scholar 

  • Krueger BP, Scholes GD and Fleming GR (1998) Calculation of couplings and energy transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem 102: 5378-5386

    CAS  Google Scholar 

  • KĂĽhn O and Sundström V (1997a) Energy transfer and relaxation dynamics in light-harvesting antenna complexes of photosynthetic bacteria. J Phys Chem 101: 3432-3440

    Google Scholar 

  • KĂĽhn O and Sundström V (1997b) Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach. J Chem Phys 107: 4154-4164

    Google Scholar 

  • KĂĽhn O, Renger T, May V, Voigt J, Pullerits T and Sundström V (1997) Exciton-vibrational coupling in photosynthetic antenna complexes: Theory meets experiment. Trends Photochem Photobiol 4: 213-256

    Google Scholar 

  • Kumble R, Palese S, Visschers RW, Dutton PL and Hochstrasser RM (1996) Ultrafast dynamics within the B820 subunit from the core (LH-1) antenna complex of Rs. rubrum. Chem Phys Lett 262: 396-404

    Google Scholar 

  • Li X-P (1987) High-order correction to the Trotter expansion for use in computer simulation. J Chem Phys 86: 5094-5100

    CAS  Google Scholar 

  • Lolle LI, Gray CG and Poll JD (1991) Improved short-time propagator for repulsive inverse-power-law potentials. Chem Phys Lett 177: 64-72

    CAS  Google Scholar 

  • Mak CH (1992) Stochastic method for real-time path integrations. Phys Rev Lett 68: 899-902

    PubMed  Google Scholar 

  • Mak CH and Egger R (1995) On the mechanism of the primary charge separation in bacterial photosynthesis. Chem Phys Lett 238: 149-157

    CAS  Google Scholar 

  • Mak CH and Egger R (1996) Monte Carlo methods for real-time path integration. Adv Chem Phys 93: 39-76

    CAS  Google Scholar 

  • Makarov DE and Makri N (1994) Path integrals for dissipative systems by tensor multiplication: Condensed phase quantum dynamics for arbitrarily long time. Chem Phys Lett 221: 482-491

    CAS  Google Scholar 

  • Makri N (1989) Effective non-oscillatory propagator for Feynman path integration in real time. Chem Phys Lett 159: 489-498

    CAS  Google Scholar 

  • Makri N (1991) Feynman path integration in quantum dynamics. Comp Phys Comm 63: 389-414

    CAS  Google Scholar 

  • Makri N (1992) Improved Feynman propagators on a grid and non-adiabatic corrections within the path integral framework. Chem Phys Lett 193: 435-444

    CAS  Google Scholar 

  • Makri N (1993) On smooth Feynman propagators for real time path integrals. J Phys Chem 97: 2417-2424

    CAS  Google Scholar 

  • Makri N (1995) Numerical path integral techniques for long time quantum dynamics of dissipative systems. J Math Phys 36: 2430-2456

    Google Scholar 

  • Makri N (1997) Path integral simulation of long-time dynamics in quantum dissipative systems. In: DeWitt-Morette C (ed) Path integrals: Basics and Applications. Plenum, New York

    Google Scholar 

  • Makri N (1999a) Iterative evaluation of the path integral for a system coupled to an anharmonic bath. J Chem Phys 111: 6164-6167

    CAS  Google Scholar 

  • Makri N (1999b) The linear response approximation and its lowest order corrections: An influence functional approach. J Phys Chem 103: 2823-2829

    CAS  Google Scholar 

  • Makri N (2004) Information guided noise reduction for Monte Carlo integration of ascillatory functions. Chem Phys Lett 400: 446-452

    CAS  Google Scholar 

  • Makri N and Makarov DE (1995a) Tensor multiplication for iterative quantum time evolution of reduced density matrices. I. Theory. J Chem Phys 102: 4600-4610

    CAS  Google Scholar 

  • Makri N and Makarov DE (1995b) Tensor multiplication for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J Chem Phys 102: 4611-4618

    CAS  Google Scholar 

  • Makri N and Miller WH (1987) Monte Carlo integration with oscillatory integrands: Implications for Feynman path integration in real time. Chem Phys Lett 139: 10-14

    Google Scholar 

  • Makri N and Miller WH (1988a) Correct short time propagator for Feynman path integration by power series expansion in Δt. Chem Phys Lett 151: 1-8

    Google Scholar 

  • Makri N and Miller WH (1988b) Monte Carlo path integration for the real time propagator. J Chem Phys 89: 2170-2177

    CAS  Google Scholar 

  • Makri N and Miller WH (1989) Exponential power series expansion for the quantum time evolution operator. J Chem Phys 90: 904-911

    Google Scholar 

  • Makri N, Sim E, Makarov DE and Topaler M (1996) Long-time quantum simulation of the primary charge separation in bacterial photosynthesis. Proc Natl Acad Sci USA 93: 3926-3931

    CAS  PubMed  Google Scholar 

  • Marchi M, Gehlen JN, Chandler D and Newton M (1993) Diabatic surfaces and the pathway for primary electron transfer in a photosynthetic reaction center. J Am Chem Soc 115: 4178-4190

    CAS  Google Scholar 

  • Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys 24: 966-978

    CAS  Google Scholar 

  • Marcus RA (1987) Superexchange versus an intermediate BChlmechanism in reaction centers of photosynthetic bacteria. Chem Phys Lett 133: 471-477

    CAS  Google Scholar 

  • Marcus RA (1988) An internal consistency test and its implications for the initial steps in bacterial photosynthesis. Chem Phys Lett 146: 13-21

    CAS  Google Scholar 

  • Marcus RA (1993) Electron transfer reactions in Chemistry: Theory and experiment (Nobel Lecture). Angew Chem Int Ed Engl 32: 1111-1121

    Google Scholar 

  • Marcus RA and Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811: 265-322

    CAS  Google Scholar 

  • Martin J-L, Breton J, Hoff AJ, Migus A and Antonetti A (1986) Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 +/- 0.2 psec. Proc Natl Acad Sci USA 83: 957-961

    CAS  PubMed  Google Scholar 

  • McDermott G, Prince S, Freer A, Hawthornthwaite-Lawless A, Papiz M, Cogdell R and Isaacs N (1995) Crystal structure of an integral membrane light-harvesting complex from photo-synthetic bacteria. Nature 374: 517-521

    CAS  Google Scholar 

  • Meier T, Chernyak V and Mukamel S (1997a) Multiple exciton coherence sizes in photosynthetic antenna complexes viewed by pump-probe spectroscopy. J Phys Chem 101: 7332-7342

    CAS  Google Scholar 

  • Meier T, Zhao Y, Chernyak V and Mukamel S (1997b) Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes. J Chem Phys 107: 3876-3893

    CAS  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller H and Teller E (1953): Equation of state calculations by fast computing machines. J Chem Phys 21: 1087-1092

    CAS  Google Scholar 

  • Monshouwer R and van Grondelle R (1996) Excitations and excitons in bacterial light harvesting complexes. Biochim Biophys Acta 1275: 70-75

    Google Scholar 

  • Monshouwer R, Abrahamsson M, van Mourik F and van Grondelle R (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101: 7241-7248

    CAS  Google Scholar 

  • Nagarajan V, Alden RG, Williams JC and Parson WW (1996) Ultrafast exciton relaxation in the B850 antenna complex of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 93: 13774-13779

    CAS  PubMed  Google Scholar 

  • Onuchic JN and Wolynes PG (1988) Classical and quantum pictures of reaction dynamics in condensed matter: Resonances, dephasing, and all that. J Phys Chem 92: 6495-6503

    CAS  Google Scholar 

  • Onuchic JN and Wolynes PG (1993) Energy landscapes, glass transitions, and chemical reaction dynamics in biomolecular or solvent environment. J Chem Phys 98: 2218-2224

    CAS  Google Scholar 

  • Parson WW, Creighton S and Warshel A (1987) In: Kobayashi T (ed) Primary Processes in Photobiology. Springer-Verlag, Berlin

    Google Scholar 

  • Pullerits T and Sundström V (1996) Photosynthetic light-harvesting pigment-protein complexes: Toward understanding how and why. Acc Chem Res 29: 381-389

    CAS  Google Scholar 

  • Pullerits T, van Mourik F, Monshouwer R, Visschers RW and van Grondelle R (1994a) Electron-phonon coupling in the B820 subunit form of LH1 studied by temperature-dependence of optical spectra. J Lumin 58: 168-171

    CAS  Google Scholar 

  • Pullerits T, Visscher KJ, Hess S, Sundström V, Freibert A, Timpmann K and van Grondelle R (1994b) Energy transfer in the inhomogeneously broadened core antenna of purple bacteria — a simultaneous fit of low-intensity picosecond absorption and fluorescence kinetics. Biophys J 66: 236-248

    CAS  Google Scholar 

  • Pullerits T, Hess S, Herek J and Sundström V (1997) Temperature dependence of excitation transfer in LH2 of Rhodobacter sphaeroides. J Phys Chem 101: 10560-10567.

    CAS  Google Scholar 

  • Reddy NRS, Small GJ, Seibert M and Picorel R (1991) Energy transfer dynamics of the B800-B850 antenna complex of Rhodobacter sphaeroides—A hole burning study. Chem Phys Lett 181: 391-399

    CAS  Google Scholar 

  • Reddy NRS, Cogdell RJ, Zhao L and Small GJ (1993) Nonphotochemical hole burning of the B800-B850 antenna complex of Rhodopseudomonas acidophila. Photochem Photobiol 57: 35-39

    CAS  Google Scholar 

  • Sauer K, Cogdell RJ, Prince SM, Freer A, Isaacs NW and Scheer H (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseu-domonas acidophila. Photochem Photobiol 64: 564-576

    CAS  Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Nagele T, Wachtveitl J, Meyer M, Scheer H and Zinth W (1994) Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers. Chem Phys Lett 223: 116-120

    CAS  Google Scholar 

  • Shao J and Makri N (2001) Iterative path integral calculation of quantum correlation functions for dissipative systems. Chem Phys 268: 1-10

    CAS  Google Scholar 

  • Shao J and Makri N (2002) Iterative path integral formulation of equilibrium correlation functions for quantum dissipative systems. J Chem Phys 116: 507-514

    CAS  Google Scholar 

  • Sharp K and Honig B (1990) Electrostatic interactions in macromolecules: Theory and applications. Annu Rev Biophys Biophys Chem 19: 301-332

    CAS  PubMed  Google Scholar 

  • Sim E and Makri N (1996) Tensor propagator with weight-selected paths for quantum dissipative dynamics with long-memory kernels. Chem Phys Lett 249: 224-230

    CAS  Google Scholar 

  • Sim E and Makri N (1997a) Filtered propagator functional for iterative dynamics of quantum dissipative systems. Comp Phys Comm 99: 335-354

    CAS  Google Scholar 

  • Sim E and Makri N (1997b) Path integral simulation of charge transfer dynamics in photosynthetic reaction centers. J Phys Chem 101: 5446-5458

    CAS  Google Scholar 

  • Sundström V, Pullerits T and van Grondelle R (1999) Photosynthetic light harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327-2346

    Google Scholar 

  • Thompson MA and Zerner MC (1991) A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J Am Chem Soc 113: 8210-8215

    CAS  Google Scholar 

  • Trotter MF (1959) On the product of semi-groups of operators. Proc Am Math Soc 10: 545-551

    Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Biochim Biophys Acta 1187: 1-65

    Google Scholar 

  • van Mourik F, Visschers RW and van Grondelle R (1992) Energy transfer and aggregate size effects in the inhomogeneously broadened core light-harvesting complex of Rhodobacter sphaeroides. Chem Phys Lett 193: 1-7

    CAS  Google Scholar 

  • Visschers RW, van Mourik F, Monshouwer R and van Grondelle R (1993) Inhomogeneous spectral broadening of the B820 subunit form of LH1. Biochim Biophys Acta 1141: 238-244

    CAS  Google Scholar 

  • Visser HM, Somsen OJG, van Mourik F, Lin S, van Stokkum IHM and van Grondelle R (1995) Direct observation of subpicosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillum rubrum. Biophys J 69: 1083-1099

    CAS  PubMed  Google Scholar 

  • Wang H, Manolopoulos DE and Miller WH (2001) Generalized Filinov transformation of the semiclassical initial value representation. J Chem Phys 115: 6317-6326

    CAS  Google Scholar 

  • Warshel A and Hwang J-K (1986) Simulation of the dynamics or electron transfer reactions in polar solvents: Semiclassical trajectories and dispersed polaron approaches. J Chem Phys 84: 4938-4957

    CAS  Google Scholar 

  • Warshel A, Creighton S and Parson WW (1988) Electron-transfer pathways in the primary event of bacterial photosynthesis. J Phys Chem 92: 2696-2701

    CAS  Google Scholar 

  • Warshel A, Chu ZT and Parson WW (1989) Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. Science 246: 112-116

    CAS  PubMed  Google Scholar 

  • Woodbury NW, Becker M, Middendorf D and Parson WW (1985) Picosecond kinetics of the initial photochemical electron transfer reaction in bacterial photosynthetic reaction centers. Biochemistry 24: 7516-7521

    CAS  PubMed  Google Scholar 

  • Wu H-M, Ratsep M, Lee I-J, Cogdell RJ and Small GJ (1997a) Exciton level structure and energy disorder of the B850 ring of the LH2 antenna complex. J Phys Chem B 101: 7654-7663

    CAS  Google Scholar 

  • Wu H-M, Reddy NRS and Small GJ (1997b) Direct observation and hole burning of the lowest exciton level (B870) of the LH2 antenna complex of Rps. acidophila. J Phys Chem 101: 651-656

    CAS  Google Scholar 

  • Xiao WH, Lin S, Taguchi KW and Woodbury NW (1994) Femtosecond pump-probe analysis of energy and electron transfer in photosynthetic membranes of Rhodobacter capsulatus. Biochemistry 33: 8313-8222

    CAS  PubMed  Google Scholar 

  • Zhang LY and Friesner RA (1997) Ab initio calculation of electronic coupling in the photosynthetic reaction center. Proc Nat Acad Sci USA 95: 13603-13605

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Makri, N. (2008). Equilibrium and Dynamical Path Integral Methods in Bacterial Photosynthesis. In: Aartsma, T.J., Matysik, J. (eds) Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8250-4_23

Download citation

Publish with us

Policies and ethics