Advertisement

Removal of Heavy Metals from Industrial Effluents by the Submerged Aquatic Plant Myriophyllum spicatum L.

  • Els Lesage
  • Charity Mundia
  • Diederik P. L. Rousseau
  • Annelies Van de Moortel
  • Gijs Du Laing
  • Filip M. G. Tack
  • Niels De Pauw
  • Marc G. Verloo

The potential use of Myriophyllum spicatum L. for the removal of Co, Ni, Cu and Zn from industrial effluents was studied. The removal kinetics, tolerance and accumulation capacity of the submerged aquatic plant were assessed. Removal of Cu and Zn was similar and occurred rapidly with time whereas removal of Co and Ni was slower. Plant growth was not adversely affected during the 12 weeks of exposure to the wastewater. Cobalt, Ni, Cu and Zn concentrations of respectively 1,675, 1,529, 766 and 2,883 mg kg–1 DM were observed in the biomass. M. spicatum is suggested as an efficient plant species for the treatment of metal-contaminated industrial wastewater.

Keywords

Cobalt constructed wetlands Eurasian water milfoil plant uptake sorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APIRS. (n.d.). Aquatic, Wetland and Invasive Plant Information Retrieval System from the University of Florida. Retrieved in August, 2006, from http://plants.ifas.ufl.edu.
  2. Du Laing, G., Tack, F.M.G., & Verloo, M.G. (2003). Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Analytica Chimica Acta, 497(1–2), 191–198.CrossRefGoogle Scholar
  3. Fritioff, A., & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.CrossRefGoogle Scholar
  4. Guilizzoni, P. (1991). The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquatic Botany, 41(1–3), 87–109.CrossRefGoogle Scholar
  5. Kamal, M., Ghaly, A.E., Mahmoud, N., & Côté, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.CrossRefGoogle Scholar
  6. Keskinkan, O. (2005). Investigation of heavy metal removal by a submerged aquatic plant (Myriophyllum spicatum) in a batch system. Asian Journal of Chemistry, 17(3), 1507–1517.Google Scholar
  7. Kivaisi, A. (2001). The potential of constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecological Engineering, 16, 545–560.CrossRefGoogle Scholar
  8. Kurniawan, T.A., Chan, G.Y.S., Lo, W.-H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98.Google Scholar
  9. Maine, M.A., Duarte, M.V., & Suñé, N.L. (2001). Cadmium uptake by floating macrophytes. Water Research, 35(11), 2629–2634.CrossRefGoogle Scholar
  10. Maine, M.A., Suñé, N.L., & Lagger, S.C. (2004). Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. Water Research, 38, 1494–1501.CrossRefGoogle Scholar
  11. Qian J.H., Zayed A., Zhu Y.L., Yu, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. Journal of Environmental Quality, 28, 1448–1455.Google Scholar
  12. Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–475.CrossRefGoogle Scholar
  13. Samecka-Cymerman, A., & Kempers, A.J. (2004). Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotoxicology and Environmental Safety, 59, 64–69.CrossRefGoogle Scholar
  14. Sivaci, E.R., Sivaci, A., & Sökmen, M. (2004). Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere, 56, 1043–1048.CrossRefGoogle Scholar
  15. Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721.CrossRefGoogle Scholar
  16. Zhu, Y.L., Zayed, A.M., Qian, J.-H., de Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. Journal of Environmental Quality, 28, 339–344.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Els Lesage
    • 1
  • Charity Mundia
    • 1
  • Diederik P. L. Rousseau
    • 2
  • Annelies Van de Moortel
    • 1
  • Gijs Du Laing
    • 1
  • Filip M. G. Tack
    • 1
  • Niels De Pauw
    • 3
  • Marc G. Verloo
    • 1
  1. 1.Department of Applied Analytical and Physical ChemistryGhent UniversityBelgium
  2. 2.Department of Environmental ResourcesUNESCO-IHENetherlands
  3. 3.Laboratory of Environmental Toxicology and Aquatic EcologyGhent UniversityBelgium

Personalised recommendations