Skip to main content

Part of the book series: Heat Shock Proteins ((HESP,volume 3))

  • 617 Accesses

Abstract

Chaperones, including heat-shock proteins (Hsps) Hsp70, Hsp40 and GroEL, has been shown to protect from both global and focal ischemia in vivo and cell culture models of ischemia/reperfusion injury in vitro. While the mechanism of protection in part reflects chaperone functions (i.e., preventing abnormal protein folding or aggregation), work from our laboratory and others has implicated additional mechanisms including direct interference with cell death pathways, modulation of inflammation, and preservation of mitochondrial function. In this chapter we will first briefly introduce the Hsps, then describe the animal and cellular models of cerebral ischemia in which effects of Hsps have been studied, including reviewing methods used to overexpress Hsps. We will focus on the protective effect of overexpressing different Hsps against ischemic stroke and elaborate the potential mechanisms involved. Despite a great deal of study, much remains to be learned about the multifaceted effects of Hsps in cerebral ischemia. The endogenous stress response remains a model of cell protection with promise for the development of novel therapies for ischemic brain injury

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N. 1998. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18: 4949–4960.

    PubMed  CAS  Google Scholar 

  • Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. 1998. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 21: 516–520.

    Article  PubMed  CAS  Google Scholar 

  • Amin V, Cumming DV, Latchman DS. 1996. Over-expression of heat shock protein 70 protects neuronal cells against both thermal and ischaemic stress but with different efficiencies. Neurosci Lett 206: 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Badin RA, Lythgoe MF, van der Weerd L, Thomas DL, Gadian DG, Latchman DS. 2006. Neuroprotective effects of virally delivered HSPs in experimental stroke. J Cereb Blood Flow Metab 26: 371–381.

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ, Karin M. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–1071.

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Green DR. 2001. Stress management – heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11: 6–10.

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR. 2000. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2: 469–475.

    Article  PubMed  CAS  Google Scholar 

  • Beissinger M, Buchner J. 1998. How chaperones fold proteins. Biol Chem 379: 245–259.

    PubMed  CAS  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR. 2001. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  • Bhagat L, Singh VP, Hietaranta AJ, Agrawal S, Steer ML, Saluja AK. 2000. Heat shock protein 70 prevents secretagogue-induced cell injury in the pancreas by preventing intracellular trypsinogen activation. J Clin Invest 106: 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko A, Chesler M. 2001. Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34: 134–142.

    Article  PubMed  CAS  Google Scholar 

  • Bonini NM. 2002. Chaperoning brain degeneration. Proc Natl Acad Sci USA 99 Suppl 4: 16407–16411.

    Article  CAS  Google Scholar 

  • Clemons NJ, Anderson RL. 2006. TRAIL-induced apoptosis is enhanced by heat shock protein 70 expression. Cell Stress Chaperones 11: 343–355.

    Article  PubMed  CAS  Google Scholar 

  • Cohen FE. 1999. Protein misfolding and prion diseases. J Mol Biol 293: 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Creagh EM, Cotter TG. 1999. Selective protection by hsp 70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis. Immunology 97: 36–44.

    Article  PubMed  CAS  Google Scholar 

  • DeGracia DJ, Hu BR. 2007. Irreversible translation arrest in the reperfused brain. J Cereb Blood Flow Metab 27: 875–893.

    PubMed  CAS  Google Scholar 

  • Dichter MA. 1978. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res 149: 279–293.

    Article  PubMed  CAS  Google Scholar 

  • Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL. 2001. Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16: 210–219.

    Article  PubMed  CAS  Google Scholar 

  • Dugan LL, Bruno VM, Amagasu SM, Giffard RG. 1995. Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci 15: 4545–4555.

    PubMed  CAS  Google Scholar 

  • Erbse A, Mayer MP, Bukau B. 2004. Mechanism of substrate recognition by Hsp70 chaperones. Biochem Soc Trans 32: 617–621.

    Article  PubMed  CAS  Google Scholar 

  • Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ. 1996. Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem 271: 17724–17732.

    Article  PubMed  CAS  Google Scholar 

  • Feinstein DL, Galea E, Reis DJ. 1997. Suppression of glial nitric oxide synthase induction by heat shock: effects on proteolytic degradation of IkappaB-alpha. Nitric Oxide 1: 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Fink SL, Chang LK, Ho DY, Sapolsky RM. 1997. Defective herpes simplex virus vectors expressing the rat brain stress- inducible heat shock protein 72 protect cultured neurons from severe heat shock. J Neurochem 68: 961–969.

    Article  PubMed  CAS  Google Scholar 

  • Freeman BC, Myers MP, Schumacher R, Morimoto RI. 1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14: 2281–2292.

    PubMed  CAS  Google Scholar 

  • Frydman J. 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70: 603–647.

    Article  PubMed  CAS  Google Scholar 

  • Frydman J, Hartl FU. 1996. Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272: 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  • Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY. 1997. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272: 18033–18037.

    Article  PubMed  CAS  Google Scholar 

  • Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY. 1998. Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Gebauer M, Zeiner M, Gehring U. 1997. Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett 417: 109–113.

    Article  PubMed  CAS  Google Scholar 

  • Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, Sapolsky R, Steinberg G, Hu B, Yenari MA. 2004. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol 207: 3213–3220.

    Article  PubMed  CAS  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B. 2001. In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914: 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Guzhova IV, Darieva ZA, Melo AR, Margulis BA. 1997. Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2: 132–139.

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571–579.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H. 2002. Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity. Circulation 106: 2601–2607.

    Article  PubMed  CAS  Google Scholar 

  • Heal RD, McGivan JD. 1997. Induction of the stress protein Grp75 by amino acid deprivation in CHO cells does not involve an increase in Grp75 mRNA levels. Biochim Biophys Acta 1357: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Hecker JG, Hall LL, Irion VR. 2001. Nonviral gene delivery to the lateral ventricles in rat brain: initial evidence for widespread distribution and expression in the central nervous system. Mol Ther 3: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Heneka MT, Sharp A, Klockgether T, Gavrilyuk V, Feinstein DL. 2000. The heat shock response inhibits NF-kappaB activation, nitric oxide synthase type 2 expression, and macrophage/microglial activation in brain. J Cereb Blood Flow Metab 20: 800–811.

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu Rev Biochem 67: 425–479.

    Article  PubMed  CAS  Google Scholar 

  • Hu BR, Martone ME, Jones YZ, Liu CL. 2000. Protein aggregation after transient cerebral ischemia. J Neurosci 20: 3191–3199.

    PubMed  CAS  Google Scholar 

  • Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, Siesjo BK, Liu CL. 2001. Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab 21: 865–875.

    Article  PubMed  CAS  Google Scholar 

  • Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M. 1998. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17: 6124–6134.

    Article  PubMed  CAS  Google Scholar 

  • Jana NR, Tanaka M, Wang G, Nukina N. 2000. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9: 2009–2018.

    Article  PubMed  CAS  Google Scholar 

  • Kakizuka A. 1998. Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet 14: 396–402.

    Article  PubMed  CAS  Google Scholar 

  • Kaul SC, Deocaris CC, Wadhwa R. 2007. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42: 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Kelly S, Uney JB, McCulloch J. 2001a. Adenovirus HSP70 gene transfer ameliorates damage following global ischemia. J. Cereb Blood Flow Metab 21: S23.

    Google Scholar 

  • Kelly S, Bieneman A, Horsburgh K, Hughes D, Sofroniew MV, McCulloch J, Uney JB. 2001b. Targeting expression of hsp70i to discrete neuronal populations using the Lmo-1 promoter: assessment of the neuroprotective effects of hsp70i in vivo and in vitro. J Cereb Blood Flow Metab 21: 972–981.

    Article  CAS  Google Scholar 

  • Kelly S, Bieneman A, Horsburgh K, Hughes D, Sofroniew MV, McCulloch J, Uney JB. 2001c. Targeting expression of hsp70i to discrete neuronal populations using the Lmo-1 promoter: assessment of the neuroprotective effects of hsp70i in vivo and in vitro. J Cereb Blood Flow Metab 21: 972–981.

    Article  CAS  Google Scholar 

  • Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG, Sapolsky RM, Yenari MA, Steinberg GK. 2002. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 52: 160–167.

    Article  PubMed  CAS  Google Scholar 

  • Klosterhalfen B, Tons C, Hauptmann S, Tietze L, Offner FA, Kupper W, Kirkpatrick CJ. 1996. Influence of heat shock protein 70 and metallothionein induction by zinc-bis-(DL-hydrogenaspartate) on the release of inflammatory mediators in a porcine model of recurrent endotoxemia. Biochem Pharmacol 52: 1201–1210.

    Article  PubMed  CAS  Google Scholar 

  • Koh JY, Choi DW. 1987. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20: 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Langley SM, Chai PJ, Miller SE, Mault JR, Jaggers JJ, Tsui SS, Lodge AJ, Lefurgey A, Ungerleider RM. 1999. Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg 68: 4–12; discussion 12–13.

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RG. 2001a. Differential neuroprotection from human heat shock protein 70 overexpression in vitro and in vivo models of ischemia and ischemia- like conditions. Exp Neurol 170: 129–139.

    Article  CAS  Google Scholar 

  • Lee SH, Kim M, Yoon BW, Kim YJ, Ma SJ, Roh JK, Lee JS, Seo JS. 2001b. Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke 32: 2905–2912.

    Article  CAS  Google Scholar 

  • Lee JE, Kim YJ, Kim JY, Lee WT, Yenari MA, Giffard RG. 2004. The 70 kDa heat shock protein suppresses matrix metalloproteinases in astrocytes. Neuroreport 15: 499–502.

    Article  PubMed  CAS  Google Scholar 

  • Li GC, Li L, Liu RY, Rehman M, Lee WM. 1992. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc Natl Acad Sci USA 89: 2036–2040.

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Rye HS. 2006. GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41: 211–239.

    Article  PubMed  CAS  Google Scholar 

  • Lu A, Ran R, Parmentier-Batteur S, Nee A, Sharp FR. 2002. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81: 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Manning-Krieg UC, Scherer PE, Schatz G. 1991. Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J 10: 3273–3280.

    PubMed  CAS  Google Scholar 

  • Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95: 1446–1456.

    Article  PubMed  CAS  Google Scholar 

  • Massa SM, Longo FM, Zuo J, Wang S, Chen J, Sharp FR. 1995. Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res 40: 807–819.

    Article  PubMed  CAS  Google Scholar 

  • Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J. 2005. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25: 899–910.

    Article  PubMed  CAS  Google Scholar 

  • Meng X, Harken AH. 2002. The interaction between Hsp70 and TNF-alpha expression: a novel mechanism for protection of the myocardium against post-injury depression. Shock 17: 345–353.

    Article  PubMed  Google Scholar 

  • Miller DG, Adam MA, Miller AD. 1990. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10: 4239–4242.

    PubMed  CAS  Google Scholar 

  • Minami Y, Hohfeld J, Ohtsuka K, Hartl FU. 1996. Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J Biol Chem 271: 19617–19624.

    Article  PubMed  CAS  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. 1997. Role of the human heat shock protein hsp70 in protection against stress- induced apoptosis. Mol Cell Biol 17: 5317–5327.

    PubMed  CAS  Google Scholar 

  • Nowak TS, Jr. 1990. Protein synthesis and the heart shock/stress response after ischemia. Cerebrovasc Brain Metab Rev 2: 345–366.

    PubMed  Google Scholar 

  • Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M. 2000. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor- specific death program that is independent of caspases and bypasses Bcl- 2. Proc Natl Acad Sci USA 97: 7871–7876.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien MC, Flaherty KM, McKay DB. 1996. Lysine 71 of the chaperone protein Hsc70 is essential for ATP hydrolysis. J Biol Chem 271: 15874–15878.

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Kitabatake N, Tani F. 2004. Role of the C-terminal region of mouse inducible Hsp72 in the recognition of peptide substrate for chaperone activity. FEBS Lett 576: 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka K, Hata M. 2000. Molecular chaperone function of mammalian Hsp70 and Hsp40 – a review. Int J Hyperthermia 16: 231–245.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Hu BR. 2001. Protein ubiquitination in rat brain following hypoglycemic coma. Neurosci Lett 298: 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Xu L, Giffard RG. 2005. Geldanamycin treatment reduces delayed CA1 damage in mouse hippocampal organotypic cultures subjected to oxygen glucose deprivation. Neurosci Lett 380: 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Xu LJ, Sun YJ, Giffard RG. 2006. Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones 11: 180–186.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG. 2007. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27: 4253–4260.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Sun XY, Cao J, Mivechi NF, Giffard RG. 1996. Over-expression of HSP-70 protects astrocytes from combined oxygen–glucose deprivation. Neuroreport 7: 429–432.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Koumenis IL, Xu L, Giffard RG. 1998. Potentiation of murine astrocyte antioxidant defence by bcl-2: protection in part reflects elevated glutathione levels. Eur J Neurosci 10: 1252–1260.

    Article  PubMed  CAS  Google Scholar 

  • Planas AM, Soriano MA, Estrada A, Sanz O, Martin F, Ferrer I. 1997. The heat shock stress response after brain lesions: induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Prog Neurobiol 51: 607–636.

    Article  PubMed  CAS  Google Scholar 

  • Plumier JC, Krueger AM, Currie RW, Kontoyiannis D, Kollias G, Pagoulatos GN. 1997. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 2: 162–167.

    Article  PubMed  CAS  Google Scholar 

  • Polla BS, Stubbe H, Kantengwa S, Maridonneau-Parini I, Jacquier-Sarlin MR. 1995. Differential induction of stress proteins and functional effects of heat shock in human phagocytes. Inflammation 19: 363–378.

    Article  PubMed  CAS  Google Scholar 

  • Qiao Y, Ouyang YB, Giffard RG. 2003. Overexpression of HDJ-2 protects astrocytes from ischemia-like injury and reduces redistribution of ubiquitin staining in vitro. J Cereb Blood Flow Metab 23: 1113–1116.

    Article  PubMed  CAS  Google Scholar 

  • Radford NB, et al. 1996. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci USA 93: 2339–2342.

    Article  PubMed  CAS  Google Scholar 

  • Rajapandi T, Wu C, Eisenberg E, Greene L. 1998. Characterization of D10S and K71E mutants of human cytosolic hsp70. Biochemistry 37: 7244–7250.

    Article  PubMed  CAS  Google Scholar 

  • Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR. 2000. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 47: 782–791.

    Article  PubMed  CAS  Google Scholar 

  • Ran R, et al. 2004. Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 18: 1466–1481.

    Article  PubMed  CAS  Google Scholar 

  • Ravagnan L, et al. 2001. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3: 839–843.

    Article  PubMed  CAS  Google Scholar 

  • Rytter A, Cronberg T, Asztely F, Nemali S, Wieloch T. 2003. Mouse hippocampal organotypic tissue cultures exposed to in vitro “ischemia” show selective and delayed CA1 damage that is aggravated by glucose. J Cereb Blood Flow Metab 23: 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. 2000. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2: 476–483.

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Saito H, Matsuki N. 1996. HSP70 is essential to the neuroprotective effect of heat-shock. Brain Res 740: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder S, Bischoff J, Lehmann LE, Hering R, von Spiegel T, Putensen C, Hoeft A, Stuber F. 1999. Endotoxin inhibits heat shock protein 70 (HSP70) expression in peripheral blood mononuclear cells of patients with severe sepsis. Intensive Care Med 25: 52–57.

    Article  PubMed  CAS  Google Scholar 

  • Scott MD, Frydman J. 2003. Aberrant protein folding as the molecular basis of cancer. Methods Mol Biol 232: 67–76.

    PubMed  CAS  Google Scholar 

  • Sharp FR, Lowenstein D, Simon R, Hisanaga K. 1991. Heat shock protein hsp72 induction in cortical and striatal astrocytes and neurons following infarction. J Cereb Blood Flow Metab 11: 621–627.

    PubMed  CAS  Google Scholar 

  • Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE. 2001. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10: 1307–1315.

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjo BK. 1984. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 69: 385–401.

    Article  PubMed  CAS  Google Scholar 

  • Soriano MA, Planas AM, Rodriguez-Farre E, Ferrer I. 1994. Early 72-kDa heat shock protein induction in microglial cells following focal ischemia in the rat brain. Neurosci Lett 182: 205–207.

    Article  PubMed  CAS  Google Scholar 

  • States BA, Honkaniemi J, Weinstein PR, Sharp FR. 1996. DNA fragmentation and HSP70 protein induction in hippocampus and cortex occurs in separate neurons following permanent middle cerebral artery occlusions. J Cereb Blood Flow Metab 16: 1165–1175.

    Article  PubMed  CAS  Google Scholar 

  • Steel R, Doherty JP, Buzzard K, Clemons N, Hawkins CJ, Anderson RL. 2004. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 279: 51490–51499.

    Article  PubMed  CAS  Google Scholar 

  • Stenoien DL, Cummings CJ, Adams HP, Mancini MG, Patel K, DeMartino GN, Marcelli M, Weigel NL, Mancini MA. 1999. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8: 731–741.

    Article  PubMed  CAS  Google Scholar 

  • Stoppini L, Buchs PA, Muller D. 1991. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Ouyang YB, Xu L, Chow AM, Anderson R, Hecker JG, Giffard RG. 2006. The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab 26: 937–950.

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. 1990. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10: 290–293.

    PubMed  CAS  Google Scholar 

  • Tang Y, Ramakrishnan C, Thomas J, DeFranco DB. 1997. A role for HDJ-2/HSDJ in correcting subnuclear trafficking, transactivation, and transrepression defects of a glucocorticoid receptor zinc finger mutant. Mol Biol Cell 8: 795–809.

    PubMed  CAS  Google Scholar 

  • Taylor JP, Hardy J, Fischbeck KH. 2002. Toxic proteins in neurodegenerative disease. Science 296: 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  • Thulasiraman V, Yang CF, Frydman J. 1999. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18: 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya D, Hong S, Matsumori Y, Shiina H, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR. 2003. Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome C release and subsequent DNA fragmentation after permanent focal ischemia. J Cereb Blood Flow Metab 23: 718–727.

    Article  PubMed  CAS  Google Scholar 

  • Uney JB, Kew JN, Staley K, Tyers P, Sofroniew MV. 1993. Transfection-mediated expression of human Hsp70i protects rat dorsal root ganglian neurones and glia from severe heat stress. FEBS Lett 334: 313–316.

    Article  PubMed  CAS  Google Scholar 

  • van der Weerd L, Lythgoe MF, Badin RA, Valentim LM, Akbar MT, de Belleroche JS, Latchman DS, Gadian DG. 2005. Neuroprotective effects of HSP70 overexpression after cerebral ischaemia – an MRI study. Exp Neurol 195: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C. 2002. HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16: 685–695.

    Article  PubMed  Google Scholar 

  • Wang TF, Chang JH, Wang C. 1993. Identification of the peptide binding domain of hsc70. 18-Kilodalton fragment located immediately after ATPase domain is sufficient for high affinity binding. J Biol Chem 268: 26049–26051.

    PubMed  CAS  Google Scholar 

  • Weiss YG, Maloyan A, Tazelaar J, Raj N, Deutschman CS. 2002. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest 110: 801–806.

    PubMed  CAS  Google Scholar 

  • Weissman JS, Kashi Y, Fenton WA, Horwich AL. 1994. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78: 693–702.

    Article  PubMed  CAS  Google Scholar 

  • Xiao N, Callaway CW, Lipinski CA, Hicks SD, DeFranco DB. 1999. Geldanamycin provides posttreatment protection against glutamate- induced oxidative toxicity in a mouse hippocampal cell line. J Neurochem 72: 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Giffard RG. 1997. HSP70 protects murine astrocytes from glucose deprivation injury. Neurosci Lett 224: 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Lee JE, Giffard RG. 1999. Overexpression of bcl-2, bcl-XL or hsp70 in murine cortical astrocytes reduces injury of co-cultured neurons. Neurosci Lett 277: 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Ouyang YB, Giffard RG. 2003. Geldanamycin reduces necrotic and apoptotic injury due to oxygen–glucose deprivation in astrocytes. Neurol Res 25: 697–700.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Dayal M, Ouyang YB, Sun Y, Yang CF, Frydman J, Giffard RG. 2006. Chaperonin GroEL and its mutant D87K protect from ischemia in vivo and in vitro. Neurobiol Aging 27: 62–569.

    Article  CAS  Google Scholar 

  • Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, Kunis DM, Onley D, Ho DY, Sapolsky RM, Steinberg GK. 1998. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy [see comments]. Ann Neurol 44: 584–591.

    Article  PubMed  CAS  Google Scholar 

  • Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK. 1999. The neuroprotective potential of heat shock protein 70 (HSP70). Mol Med Today 5: 525–531.

    Article  PubMed  CAS  Google Scholar 

  • Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG. 2005. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann NY Acad Sci 1053: 74–83.

    Article  PubMed  CAS  Google Scholar 

  • Zambrano G. 2004. Influence of the 70 kD heat shock protein in astrocytes and microglia under injury conditions. J Neurochem 90: 60.

    Google Scholar 

  • Zhao H, Yenari MA, Cheng D, Barreto-Chang OL, Sapolsky RM, Steinberg GK. 2004. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab 24: 681–692.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA. 2007. Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28: 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT. 2000. Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23: 217–247.

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94: 471–480.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ouyang, YB., Xu, L., Giffard, R.G. (2008). Molecular Chaperones and Protection in Animal and Cellular Models of Ischemic Stroke. In: Asea, A.A., Brown, I.R. (eds) Heat Shock Proteins and the Brain: Implications for Neurodegenerative Diseases and Neuroprotection. Heat Shock Proteins, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8231-3_9

Download citation

Publish with us

Policies and ethics