Skip to main content

Part of the book series: Heat Shock Proteins ((HESP,volume 3))

  • 626 Accesses

Molecular chaperones play an important role in normal retina function and are implicated in several forms of retinal dystrophy. The retina is a specialized part of the CNS that presents a fascinating paradigm to investigate molecular chaperone function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis may require chaperones and rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in putative chaperone proteins that cause inherited retinal dysfunction and degeneration. These putative chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones in the nervous system

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, S. T., Natochin, M., Barren, B., Artemyev, N. O., and O’Tousa, J. E. (2006) Heterologous expression of bovine rhodopsin in Drosophila photoreceptor cells. Invest. Ophthalmol. Vis. Sci., 47, 3722–3728.

    Article  PubMed  Google Scholar 

  • Akey, D. T., Zhu, X., Dyer, M., Li, A., Sorensen, A., Blackshaw, S., Fukuda-Kamitani, T., Daiger, S. P., Craft, C. M., Kamitani, T., and Sohocki, M. M. (2002) The inherited blindness associated protein AIPL1 interacts with the cell cycle regulator protein NUB1. Hum. Mol. Genet., 11, 2723–2733.

    Article  PubMed  CAS  Google Scholar 

  • Anukanth, A. and Khorana, H. G. (1994) Structure and function in rhodopsin: requirements of a specific structure for the intradiscal domain. J. Biol. Chem., 269, 19738–19744.

    PubMed  CAS  Google Scholar 

  • Audigier, Y., Friedlander, M., and Blobel, G. (1987) Multiple topogenic sequences in bovine opsin. Proc. Natl. Acad. Sci. U.S.A. 84, 5783–5787.

    Article  PubMed  CAS  Google Scholar 

  • Baker, E. K. and Zuker, C. S. (1994) The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J., 13, 4886–4895.

    PubMed  CAS  Google Scholar 

  • Bartolini, F., Bhamidipati, A., Thomas, S., Schwahn, U., Lewis, S. A., and Cowan, N. J. (2002) Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J. Biol. Chem., 277, 14629–14634.

    Article  PubMed  CAS  Google Scholar 

  • Bhamidipati, A., Lewis, S. A., and Cowan, N. J. (2000) ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J. Cell Biol., 149,1087–1096.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, S. S., Right, A. F., Clayton, J. F., Price, W. H., Phillips, C. I., McKeown, C. M., Jay, M., Bird, A. C., Pearson, P. L., Southern, E. M., et al. (1984) Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28. Nature, 309, 253–255.

    Article  PubMed  CAS  Google Scholar 

  • Carver, L. A. and Bradfield, C. A. (1997) Ligand-dependent Interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J. Biol. Chem., 272, 11452–11456.

    Article  PubMed  CAS  Google Scholar 

  • Chapple, J. P. and Cheetham, M. E. (2003) The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J. Biol. Chem., 278, 19087–19094.

    Article  PubMed  CAS  Google Scholar 

  • Chapple, J. P., Hardcastle, A. J., Grayson, C., Spackman, L. A., Willison, K. R., and Cheetham, M. E. (2000) Mutations in the N-terminus of the X-linked retinitis pigmentosa protein RP2 interfere with the normal targeting of the protein to the plasma membrane. Hum. Mol. Genet., 9, 1919–1926.

    Article  PubMed  CAS  Google Scholar 

  • Chapple, J. P., Hardcastle, A. J., Grayson, C., Willison, K.R., and Cheetham, M. E. (2002) Delineation of the plasma membrane targeting domain of the X-linked retinitis pigmentosa protein RP2. Invest. Ophthalmol. Vis. Sci., 43, 2015–2020.

    PubMed  Google Scholar 

  • Chapple, J. P., Grayson, C., Hardcastle, A. J., Bailey, T. A., Matter, K., Adamson, P., Graham, C. H., Willison, K. R., and Cheetham, M. E. (2003) Organization on the plasma membrane of the retinitis pigmentosa protein RP2: investigation of association with detergent-resistant membranes and polarized sorting. Biochem. J., 372, 427–433.

    Article  PubMed  CAS  Google Scholar 

  • Colley, N. J., Baker, E. K., Stamnes M.A., and Zuker, C. S. (1991) The cyclophilin homolog ninaA is required in the secretory pathway. Cell, 67, 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Daiger, S. P., Bowne, S. J., and Sullivan, L. S. (2007) Perspective on genes and mutations causing retinitis pigmentosa. Arch. Ophthalmol., 125, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Deretic, D., Aebersold, R. H., Morrison, H. D., and Papermaster, D. S. (1994) Alpha A- and alpha B-crystallin in the retina. Association with the post-Golgi compartment of frog retinal photoreceptors. J. Biol. Chem., 269, 16853–16861.

    PubMed  CAS  Google Scholar 

  • Dryja, T. P., McGee, T. L., Reichel, E., Hahn, L. B., Cowley, G. S., Yandell, D. W., Sandberg, M. A., and Berson, E. L. (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature, 343, 364–366.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, M. A., Donovan, S. L., Zhang, J., Gray, J., Ortiz, A., Tenney, R., Kong, J., Allikmets, R., and Sohocki, M. M. (2004) Retinal degeneration in Aipl1-deficient mice: a new genetic model of Leber congenital amaurosis. Mol. Brain Res., 132, 208–220.

    Article  PubMed  CAS  Google Scholar 

  • Frederick, J. M., Krasnoperova, N. V., Hoffmann, K., Church-Kopish, J., Ruther, K., Howes, K., Lem, J., and Baehr, W. (2001) Mutant rhodopsin transgene expression on a null background. Invest. Ophthal. Vis. Sci., 42, 826–833.

    PubMed  CAS  Google Scholar 

  • Friedlander, M. and Blobel, G. (1985) Bovine opsin has more than one signal sequence. Nature, 318, 338–343.

    Article  PubMed  CAS  Google Scholar 

  • Gong, Q., Keeney, D. R., Molinari, M., and Zhou, Z. (2005) Degradation of trafficking-defective long QT syndrome type II mutant channels by the ubiquitin-proteasome pathway. J. Biol. Chem., 280, 19419–19425.

    Article  PubMed  CAS  Google Scholar 

  • Grayson, C., Bartolini, F., Chapple, J. P., Willison, K. R., Bhamidipati, A., Lewis, S. A., Luthert, P. J., Hardcastle, A. J., Cowan, N. J., and Cheetham, M. E. (2002) Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum. Mol. Genet., 11, 3065–3074.

    Article  PubMed  CAS  Google Scholar 

  • Hipp, M. S., Raasi, S., Groettrup, M., and Schmidtke, G. (2004) NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J. Biol. Chem., 16, 16503–16510.

    Article  Google Scholar 

  • Hong, D. H., Yue, G., Adamian, M., and Li, T. (2001) Retinitis pigmentosa GTPase regulator (RPGR)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J. Biol. Chem., 276, 12091–12099.

    Article  PubMed  CAS  Google Scholar 

  • Hwa, J., Reeves, P. J., Klein-Seetharaman, J., Davidson, F., and Khorana, H. G. (1999) Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function. Proc. Natl. Acad. Sci. U.S.A., 96, 1932–1935.

    Article  PubMed  CAS  Google Scholar 

  • Illing, M. E., Rajan, R. S., Bence, N. F., and Kopito, R. R. (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J. Biol. Chem., 277, 34150–34160.

    Article  PubMed  CAS  Google Scholar 

  • Ismail, N., Crawshaw, S. G., and High, S. (2006) Active and passive displacement of transmembrane domains both occur during opsin biogenesis at the Sec61 translocon. J. Cell Sci., 119, 2826–2836.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol., 143, 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  • Kamitani, T., Kito, K., Fukuda-Kamitani, T., and Yeh, E. T. H. (2001) Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J. Biol. Chem., 276, 46655–46660.

    Article  PubMed  CAS  Google Scholar 

  • Kanner, E. M., Klein, I. K., Friedlander, M., and Simon, S. M. (2002) The amino terminus of opsin translocates ‘‘posttranslationally’’ as efficiently as cotranslationally. Biochemistry, 33, 6121–6128.

    Google Scholar 

  • Kaushal, S. and Khorana, H. G. (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry, 33, 6121–6128.

    Article  PubMed  CAS  Google Scholar 

  • Kaushal, S., Ridge K. D., and Khorana, H. G. (1994) Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc. Natl. Acad. Sci. U.S.A., 91, 4024–4028.

    Article  PubMed  CAS  Google Scholar 

  • Kean, E. L. (1999) The dolichol pathway in the retina and its involvement in the glycosylation of rhodopsin. Biochim. Biophys. Acta, 1473, 272–285.

    PubMed  CAS  Google Scholar 

  • Kim, J. C., Ou, Y. Y., Badano, J. L., Esmail, M. A., Leitch, C. C., Fiedrich, E., Beales, P. L., Archibald, J. M., Katsanis, N., Rattner, J. B., and Leroux, M. R. (2005) MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J. Cell Sci., 118, 1007–1020.

    Article  PubMed  CAS  Google Scholar 

  • Kito, K., Yeh, E. T. H., and Kamitani, T. (2001) NUB1, a NEDD8-interacting protein, is induced by interferon and downregulates the NEDD8 expression. J. Biol. Chem., 276(23):20603–20609.

    Article  Google Scholar 

  • Kuhnel, K., Veltel, S., Schlichting, I., and Wittinghofer, A. (2006) Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3. Structure, 14, 367–378.

    Article  PubMed  Google Scholar 

  • Kurada. P., Tonini, T. D., Serikaku, M. A., Piccini, J. P., and O’Tousa, J. E. (1998) Rhodopsin maturation antagonized by dominant rhodopsin mutants. Vis Neurosci., Jul-Aug; 15(4), 693–700.

    Google Scholar 

  • Kuzhandaivelu, N., Cong, Y. S., Inouye, C., Yang, W. M., and Seto, E. (1996) XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation. Nucleic Acids Res., 24, 4741–4750.

    Article  PubMed  CAS  Google Scholar 

  • Leung, S. M. and Hightower, L. E. (1997) A 16-kDa protein functions as a new regulatory protein for Hsc70 molecular chaperone and is identified as a member of the Nm23/nucleoside diphosphate kinase family. J. Biol. Chem., 272, 2607–2614.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Zuo, J., and Pierce, E. A. (2004a) The retinitis pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J. Neurosci., 24, 6427–6436.

    Article  CAS  Google Scholar 

  • Liu, X., Bulgakov, O. V., Wen, X. H., Woodruff, M. L., Pawlyk, B., Yang, J., Fain, G. L., Sandberg, M. A., Makino, C. L., and Li, T. (2004b) From the cover: AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc. Natl. Acad. Sci. U.S.A., 101, 13903–13908.

    Article  CAS  Google Scholar 

  • Loo, M. A., Jensen, T. J., Cui, L., Hou, Y., Chang, X., and Riordan, J. R. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J., 17, 6879–6887.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Q. and Whitlock, J. P., Jr. (1997) A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Biol. Chem., 272, 8878–8884.

    Article  PubMed  CAS  Google Scholar 

  • Meacock, S. L., Lecomte, F. J., Crawshaw, S. G., and High, S. (2002) Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol. Biol. Cell, 13, 4114–4129.

    Article  PubMed  CAS  Google Scholar 

  • Mendes, H. F., van der Spuy, J., Chapple, J. P., and Cheetham, M. E. (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol. Med., 11, 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Misselwitz, B., Staeck, O., and Rapoport, T. A. (1998) J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell, 2, 593–603.

    Article  PubMed  CAS  Google Scholar 

  • Petöjö-Repo, U. E., Hogue, M., Laperrière, A., Bhalla, S., Walker, P., and Bouvier, M. (2001) Newly synthesized human opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J. Biol. Chem., 276, 4416–4423.

    Article  Google Scholar 

  • Plantner, J. J., Poncz, L., and Kean, E. L. (1980) Effect of tunicamycin on the glycosylation of rhodopsin. Arch. Biochem. Biophys. 201, 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Rajan, R. S. and Kopito, R. R. (2005) Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa. J. Biol. Chem., 280, 1284–1291.

    Article  PubMed  CAS  Google Scholar 

  • Ramamurthy, V., Roberts, M., van den Akker, F., Niemi, G., Reh, T. A., and Hurley, J. B. (2003) AIPL1, a protein implicated in Leber’s congenital amaurosis, interacts with and aids in processing of farnesylated proteins. Proc. Natl. Acad. Sci. U.S.A., 100, 12630–12635.

    Article  PubMed  CAS  Google Scholar 

  • Ramamurthy, V., Niemi, G. A., Reh, T. A., and Hurley, J. B. (2004) From the cover: leber congenital amaurosis linked to AIPL1: a mouse model reveals destabilization of cGMP phosphodiesterase Proc. Natl. Acad. Sci. U.S.A., 101, 13897–13902.

    Article  CAS  Google Scholar 

  • Renthal, R., Steinemann, A., and Stryer, L. (1973) The carbohydrate moiety of rhodopsin: lectin-binding, chemical modification and fluorescence studies. Exp. Eye Res., 17, 511–515.

    Article  PubMed  CAS  Google Scholar 

  • Roepman, R., van Duijnhoven, G., Rosenberg, T., Pinckers, A. J., Bleeker-Wagemakers, L. M., Bergen, A. A., Post, J., Beck, A., Reinhardt, R., Ropers, H. H., Cremers, F. P., and Berger, W. (1996) Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. Hum. Mol. Genet., 5, 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  • Roof, D. J., Adamian, M., and Hayes, A. (1994) Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest. Ophthal. Vis. Sci., 35, 4049–4062.

    PubMed  CAS  Google Scholar 

  • Rosenbaum, E. E., Hardie, R. C., and Colley, N. J. (2006) Calnexin is essential for rhodopsin maturation, $Ca2+$ regulation and photoreceptor cell survival. Neuron, 49, 229–241.

    Article  PubMed  CAS  Google Scholar 

  • Saliba, R. S., Munro, P. M. G., Luthert, P. J., and Cheetham, M. E. (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J. Cell Sci., 115, 2907–2918.

    PubMed  CAS  Google Scholar 

  • Schrick, J. J., Vogel, P., Abuin, A., Hampton, B., and Rice, D. S. (2006) ADP-ribosylation factor-like 3 is involved in kidney and photoreceptor development. Am. J. Pathol., 168, 1288–1298.

    Article  PubMed  CAS  Google Scholar 

  • Schwahn, U., Lenzner, S., Dong, J., Feil, S., Hinzmann, B., van Duijnhoven, G., Kirschner, R., Hemberger, M., Bergen, A. A. B., Rosenberg, T., Pinckers, A. J. L. G., Fundele, R., Rosenthal, A., Cremers, F. P. M., Ropers, H. H., and Berger, W. (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat. Genet., 19, 327–332.

    Article  PubMed  CAS  Google Scholar 

  • Shern, J. F., Sharer, J. D., Pallas, D. C., Bartolini, F., Cowan, N. J., Reed, M. S., Pohl, J., and Kahn, R. A. (2003) Cytosolic Arl2 is complexed with cofactor D and protein phosphatase 2A. J. Biol. Chem., 278, 40829–40836.

    Article  PubMed  CAS  Google Scholar 

  • Sohocki, M. M., Bowne, S. J., Sullivan, L. S., Blackshaw, S., Cepko, C. L., Payne, A. M., Bhattacharya, S. S., Khaliq, S., Qasim Mehdi, S., Birch, D. G., Harrison, W. R., Elder, F. F. B., Heckenlively, J. R., and Daiger, S. P. (2000) Mutations in a new photoreceptor-pineal gene on 17p cause leber congenital amaurosis. Nat. Genet., 24, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Stamnes, M. A., Shieh, B. H., Chuman, L., Harris, G. L., and Zuker, C. S. (1991) The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell, 65, 219–227.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, A., Vaughan, S., Shaw, M. K., Gull, K., and McKean, P. G. (2007) An essential quality control mechanism at the eukaryotic basal body prior to intraflagellar transport. Traffic. 8(10), 1323–1330.

    Article  Google Scholar 

  • Stoetzel, C., Muller, J., Laurier, V., and et al. (2007) Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am. J. Hum. Genet., 80, 1–11.

    Article  CAS  Google Scholar 

  • Stoetzel, C., Laurier, V., Davis, E. E., Muller, J., Rix, S., Badano, J. L., Leitch, C. C., Salem, N., Chouery, E., Corbani, S., Jalk, N., Vicaire, S., Sarda, P., Hamel, C., Lacombe, D., Holder, M., Odent, S., Holder, S., Brooks, A. S., Elcioglu, N. H., Silva, E. D., Rossillion, B., Sigaudy, S., de Ravel, T. J. L., Alan Lewis, R., Leheup, B., Verloes, A., Amati-Bonneau, P., Megarbane, A., Poch, O., Bonneau, D., Beales, P. L., Mandel, J. L., Katsanis, N., and Dollfus, H. (2006) BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat. Genet., 38, 521–524.

    Article  PubMed  CAS  Google Scholar 

  • Stojanovic, A. and Hwa, J. (2002) Rhodopsin and retinitis pigmentosa: shedding light on structure and function. Recept. Channels, 8, 33–50.

    Article  PubMed  CAS  Google Scholar 

  • Sung, C., Schneider, B. G., Agarwal, N., Papermaster, D. S., and Nathans, J. (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. U.S.A. 88, 8840–8844.

    Article  PubMed  CAS  Google Scholar 

  • Sung, C., Davenport, C. M., and Nathans, J. (1993) Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. J. Biol. Chem., 268, 26645–26649.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Kawashima, H., Yeh, E. T. H., and Kamitani, T. (2003) Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L. J. Biol. Chem., 278, 32905–32913.

    Article  PubMed  CAS  Google Scholar 

  • Tanji, K., Tanaka, T., and Kamitani, T. (2005) Interaction of NUB1 with the proteasome subunit S5a. Biochem. Biophys. Res. Com., 337, 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Tian, G., Huang, Y., Rommelaere, H., Vandekerckhove, J., Ampe, C., and Cowan, N. J. (1996) Pathway leading to correctly folded [beta]-tubulin. Cell, 86, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Tian, G., Bhamidipati, A., Cowan, N. J., and Lewis, S. A. (1999) Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the of the alpha /beta -tubulin heterodimer. J. Biol. Chem., 274, 24054–24058.

    Article  PubMed  CAS  Google Scholar 

  • van der Spuy, J., Chapple, J. P., Clark, B. J., Luthert, P. J., Sethi, C. S., and Cheetham, M. E. (2002). The leber congenital amaurosis gene product AIPL1 is localized exclusively in rod photoreceptors of the adult human retina. Hum. Mol. Genet., 11, 823–831.

    Article  Google Scholar 

  • van der Spuy, J., Kim, J. H., Yu, Y. S., Szel, A., Luthert, P. J., Clark, B. J., and Cheetham, M. E. (2003) The expression of the leber congenital amaurosis protein AIPL1 coincides with rod and cone photoreceptor development. Invest. Ophthalmol. Vis. Sci., 44, 5396–5403.

    Article  Google Scholar 

  • van der Spuy, J. and Cheetham, M. E. (2004) The leber congenital amaurosis protein AIPL1 modulates the nuclear translocation of NUB1 and suppresses inclusion formation by NUB1 fragments. J. Biol. Chem., 279(46):48038–48047.

    Article  Google Scholar 

  • Wang, D. Y., Chan, W. M., Tam, P. O. S., Baum, L., Lam, D. S. C., Chong, K. K. L., Fan, B. J., and Pang, C. P. (2005) Gene mutations in retinitis pigmentosa and their clinical implications. Clin. Chim. Acta, 351, 5–16.

    Article  PubMed  CAS  Google Scholar 

  • Westhoff, B., Chapple, J. P., van der Spuy, J., Hohfeld, J., and Cheetham, M. E. (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr. Biol., 15, 1–7.

    Article  Google Scholar 

  • Wiertz, E. J. H. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J., and Ploegh, H. L. (1996a) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell, 84, 769–779.

    Article  CAS  Google Scholar 

  • Wiertz, E. J. H. J., Tortorella, D., Bogyo, M., Yu, J., Mothes, W., Jones, T. R., Rapoport, T. A., and Ploegh, H. L. (1996b) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 384, 432–438.

    Article  CAS  Google Scholar 

  • Xi, J., Farjo, R., Yoshida, S., Kern, T. S., Swaroop, A., and Andley, U. P. (2003) A comprehensive analysis of the expression of crystallins in mouse retina. Mol. Vis., 9, 410–419.

    PubMed  CAS  Google Scholar 

  • Yano, M., Terada, K., and Mori, M. (2003) AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins. J. Cell Biol., 163, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J. H., Qiu, J., Cai, S., Chen, Y., Cheetham, M. E., Shen, B., and Pfeifer, G. P. (2006) The retinitis pigmentosa-mutated RP2 protein exhibits exonuclease activity and translocates to the nucleus in response to DNA damage. Exp. Cell Res., 312, 1323–1334.

    Article  PubMed  CAS  Google Scholar 

  • Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T., and Brodsky, J. L. (2004) Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol. Biol. Cell, 15, 4787–4797.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Nijbroek, G., Sullivan, M. L., McCracken, A. A., Watkins, S. C., Michaelis, S., and Brodsky, J. L. (2006) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol. Biol. Cell, 12, 1303–1314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kosmaoglou, M., Novoselova, T.V., Cheetham, M.E. (2008). The Role of Chaperones and Co-Chaperones in Retinal Degenerative Diseases. In: Asea, A.A., Brown, I.R. (eds) Heat Shock Proteins and the Brain: Implications for Neurodegenerative Diseases and Neuroprotection. Heat Shock Proteins, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8231-3_5

Download citation

Publish with us

Policies and ethics