Release of Heat Shock Proteins and their Effects When in the Extracellular Space in the Nervous System

  • Michael Tytell
  • Mac B. Robinson
  • Carolanne E. Milligan
Part of the Heat Shock Proteins book series (HESP, volume 3)


The ability of heat shock proteins (Hsps) to make cells more resistant to most types of metabolic stress has great implications for all post-mitotic cells, especially those of the nervous system. Preventing the loss of neurons is a more parsimonious approach to treatment of injury and disease than is replacement because of the difficulty in reconstructing the complex architecture of the nervous system, the basis for its function storage of information. The discoveries that the 70,kD Hsps are released and that neurons can take them up from the extracellular fluid provides a rationale to investigate how to use them to rescue injured neurons teetering between life and death. We present some of the history behind those discoveries and review the current understanding of the release and uptake of the 70,kD Hsps, discussing the distinct significance these observations have for neurons and some hypotheses about how extracellular Hsps protect neurons from potentially lethal injuries


Exogenous extracellular Hsp70 Hsc70 neuronal injury apoptosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alder, G. M., Austen, B. M., Bashford, C. L., Mehlert, A., and Pasternak, C. A. (1990) Heat shock proteins induce pores in membranes. Biosci Rep 10, 509–518.PubMedCrossRefGoogle Scholar
  2. Aquino, D. A., Klipfel, A. A., Brosnan, C. F., and Norton, W. T. (1993) The 70-kDa heat shock cognate protein (HSC70) is a major constituent of the central nervous system and is up-regulated only at the mRNA level in acute experimental autoimmune encephalomyelitis. J Neurochem 61, 1340–1348.PubMedCrossRefGoogle Scholar
  3. Arispe, N. and De Maio, A. (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275, 30839–30843.PubMedCrossRefGoogle Scholar
  4. Arispe, N., Doh, M., and De Maio, A. (2002) Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7, 330–338.PubMedCrossRefGoogle Scholar
  5. Arispe, N., Doh, M., Simakova, O., Kurganov, B., and De Maio, A. (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18, 1636–1645.PubMedCrossRefGoogle Scholar
  6. Armstead, W. M. and Hecker, J. G. (2005) Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury. Am J Physiol Heart Circ Physiol 289, H1184–H1190.PubMedCrossRefGoogle Scholar
  7. Asea, A. (2005) Stress proteins and initiation of immune response: chaperokine activity of hsp72. Exerc Immunol Rev 11, 34–45.PubMedGoogle Scholar
  8. Asea, A., Kraeft, S.-K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C., and Calderwood, S. K. (2000) Hsp70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6, 435–442.PubMedCrossRefGoogle Scholar
  9. Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A., and Calderwood, S. K. (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277, 15028–15034.PubMedCrossRefGoogle Scholar
  10. Asea, A. A. A. (2007). Release of heat shock proteins: passive versus active release mechanisms. In ’Heat Shock Proteins: Potent Meidators of Inflamation and Immunity.’ (Eds A. A. A. Asea and A. De Maio.) pp. 3–20. (Springer: Dordrecht, The Netherlands.)CrossRefGoogle Scholar
  11. Asea, A. A. A. and De Maio, A. (2007). ‘Heat Shock Proteins: Potent Mediators of Inflammation and Immunity.’ (Springer: Dordrecht, The Netherlands.)Google Scholar
  12. Balogh, G., Horvath, I., Nagy, E., Hoyk, Z., Benko, S., Bensaude, O., and Vigh, L. (2005) The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J 272, 6077–6086.PubMedCrossRefGoogle Scholar
  13. Batulan, Z., Shinder, G. A., Minotti, S., He, B. P., Doroudchi, M. M., Nalbantoglu, J., Strong, M. J., and Durham, H. D. (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 23, 5789–5798.PubMedGoogle Scholar
  14. Bechtold, D. A. and Brown, I. R. (2000) Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Brain Res Mol Brain Res 75, 309–320.PubMedCrossRefGoogle Scholar
  15. Bernstein, S. L., Russell, P., Wong, P., Fishelevich, R., and Smith, L. E. (2001) Heat shock protein 90 in retinal ganglion cells: association with axonally transported proteins. Vis Neurosci 18, 429–436.PubMedCrossRefGoogle Scholar
  16. Black, M. M., Chestnut, M. H., Pleasure, I. T., and Keen, J. H. (1991) Stable clathrin: uncoating protein (hsc70) complexes in intact neurons and their axonal transport. J Neurosci 11, 1163–1172.PubMedGoogle Scholar
  17. Brown, A. (2003) Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol 160, 817–821.PubMedCrossRefGoogle Scholar
  18. Calderwood, S. K., Xiao, X., and Xie, Y. (2007). The inside story: Anti-inflammatory roles of HSF1 and heat shock proteins. In ‘Heat Shock Proteins: Potent Mediators of Inflammation and Immunity.’ (Eds A. A. A. Asea and A. De Maio.) pp. 95–113. (Springer: Dordrecht, The Netherlands.)CrossRefGoogle Scholar
  19. Campisi, J. and Fleshner, M. (2003) Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J Appl Physiol 94, 43–52.PubMedGoogle Scholar
  20. Chen, S., Bawa, D., Besshoh, S., Gurd, J. W., and Brown, I. R. (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81, 522–529.PubMedCrossRefGoogle Scholar
  21. Clark, B. D. and Brown, I. R. (1985) Axonal transport of a heat shock protein in the rabbit visual system. Proc Nat Acad Sci USA 82, 1281–1285.PubMedCrossRefGoogle Scholar
  22. Cyr, J. L. and Brady, S. T. (1992) Molecular motors in axonal transport. Cellular and molecular biology of kinesin. Mol Neurobiol 6, 137–155.PubMedCrossRefGoogle Scholar
  23. da Rocha, A. B., Zanoni, C., de Freitas, G. R., Andre, C., Himelfarb, S., Schneider, R. F., Grivicich, I., Borges, L., Schwartsmann, G., Kaufmann, M., and Regner, A. (2005) Serum Hsp70 as an early predictor of fatal outcome after severe traumatic brain injury in males. J Neurotrauma 22, 966–977.CrossRefGoogle Scholar
  24. de Gassart, A., Geminard, C., Fevrier, B., Raposo, G., and Vidal, M. (2003) Lipid raft-associated protein sorting in exosomes. Blood 102, 4336–4344.CrossRefGoogle Scholar
  25. Dybdahl, B., Wahba, A., Haaverstad, R., Kirkeby-Garstad, I., Kierulf, P., Espevik, T., and Sundan, A. (2004) On-pump versus off-pump coronary artery bypass grafting: more heat-shock protein 70 is released after on-pump surgery. Eur J Cardiothorac Surg 25, 985–992.PubMedCrossRefGoogle Scholar
  26. Edbladh, M., Ekström, P. A. R., and Edström, A. (1994) Retrograde axonal transport of locally synthesized proteins, e.g., actin and heat shock protein 70, in regenerating adult frog sciatic sensory axons. J Neurosci Res 38, 424–432.PubMedCrossRefGoogle Scholar
  27. Evdonin, A. L., Martynova, M. G., Bystrova, O. A., Guzhova, I. V., Margulis, B. A., and Medvedeva, N. D. (2006) The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. Eur J Cell Biol 85, 443–455.PubMedCrossRefGoogle Scholar
  28. Febbraio, M. A., Ott, P., Nielsen, H. B., Steensberg, A., Keller, C., Krustrup, P., Secher, N. H., and Pedersen, B. K. (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544, 957–962.PubMedCrossRefGoogle Scholar
  29. Feder, J. H., Rossi, J. M., Solomon, J., Solomon, N., and Lindquist, S. (1992) The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev 6, 1402–1413.PubMedCrossRefGoogle Scholar
  30. Fevrier, B. and Raposo, G. (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16, 415–421.PubMedCrossRefGoogle Scholar
  31. Fleshner, M. and Johnson, J. D. (2005) Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperthermia 21, 457–471.PubMedCrossRefGoogle Scholar
  32. Fujihara, S. M. and Nadler, S. G. (1999) Intranuclear targeted delivery of functional NF-kB by 70 kDa heat shock protein. EMBO J 18, 411–419.PubMedCrossRefGoogle Scholar
  33. Gabai, V. L. and Sherman, M. Y. (2002) Invited review: Interplay between molecular chaperones and signaling pathways in survival of heat shock. J Appl Physiol 92, 1743–1748.PubMedGoogle Scholar
  34. Gallant, P. E. (2000) Axonal protein synthesis and transport. J Neurocytol 29, 779–782.PubMedCrossRefGoogle Scholar
  35. Geminard, C., Nault, F., Johnstone, R. M., and Vidal, M. (2001) Characteristics of the interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J Biol Chem 276, 9910–9916.PubMedCrossRefGoogle Scholar
  36. Giraldo, P. C., Ribeiro-Filho, A. D., Simões, J. A., Neuer, A., Feitosa, S. B. N., and Witkin, S. S. (1999) Circulating heat shock proteins in women with a history of recurrent vulvovaginitis. Infect Dis Obstet Gynecol 7, 128–132.PubMedCrossRefGoogle Scholar
  37. Guidon, P. T., Jr. and Hightower, L. E. (1986a) Purification and initial characterization of the 71-kilodalton rat heat-shock protein and its cognate as fatty acid binding proteins. Biochemistry 25, 3231–3239.CrossRefGoogle Scholar
  38. Guidon, P. T., Jr. and Hightower, L. E. (1986b) The 73 kilodalton heat shock cognate protein purified from rat brain contains nonesterified palmitic and stearic acids. J Cell Physiol 128, 239–245.CrossRefGoogle Scholar
  39. Gutierrez, J. A. and Guerriero, V., Jr. (1995) Relative abundance of bovine Hsp70 mRNA and protein. Biochim Biophys Acta Gene Struct Expression 1260, 239–242.CrossRefGoogle Scholar
  40. Guzhova, I., Kislyakova, K., Moskoliova, O., Fridlanskaya, I., Tytell, M., Cheetham, M., and Margulis, B. (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914, 66–73.PubMedCrossRefGoogle Scholar
  41. Guzhova, I. V., Arnholdt, A. C. V., Darieva, Z. A., Kinev, A. V., Lasunskaia, E. B., Nilsson, K., Bozhkov, V. M., Voronin, A. P., and Margulis, B. A. (1998) Effects of exogenous stress protein 70 on the functional properties of human promonocytes through binding to cell surface and internalization. Cell Stress Chaperones 3, 67–77.PubMedCrossRefGoogle Scholar
  42. Hightower, L. E. and Guidon, P. T., Jr. (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138,257–266.Google Scholar
  43. Houenou, L. J., Li, L., Lei, M., Kent, C. R., and Tytell, M. (1996) Exogenous heat shock cognate protein Hsc70 prevents axotomy-induced death of spinal sensory neurons. Cell Stress Chaperones 1, 161–166.PubMedCrossRefGoogle Scholar
  44. Johnson, J. D., Campisi, J., Sharkey, C. M., Kennedy, S. L., Nickerson, M., and Fleshner, M. (2005) Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J Appl Physiol 99, 1789–1795.PubMedCrossRefGoogle Scholar
  45. Johnson, J. D. and Fleshner, M. (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol 79, 425–434.PubMedCrossRefGoogle Scholar
  46. Kakimura, J., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., Shibagaki, K., Taniguchi, T., Nomura, Y., Gebicke-Haerter, P. J., Smith, M. A., Perry, G., and Shimohama, S. (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16, 601–603.PubMedGoogle Scholar
  47. Kelty, J. D., Noseworthy, P. A., Feder, M. E., Robertson, R. M., and Ramirez, J. M. (2002) Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress. J Neurosci 22, RC193.Google Scholar
  48. Kimura, F., Itoh, H., Ambiru, S., Shimizu, H., Togawa, A., Yoshidome, H., Ohtsuka, M., Shimamura, F., Kato, A., Nukui, Y., and Miyazaki, M. (2004) Circulating heat-shock protein 70 is associated with postoperative infection and organ dysfunction after liver resection. Am J Surg 187, 777–784.PubMedCrossRefGoogle Scholar
  49. Koroshetz, W. J. and Bonventre, J. V. (1994) Heat shock response in the central nervous system. Experientia 50, 1085–1091.PubMedCrossRefGoogle Scholar
  50. Krueger, A. M., Armstrong, J. N., Plumier, J. C., Robertson, H. A., and Currie, R. W. (1999) Cell specific expression of Hsp70 in neurons and glia of the rat hippocampus after hyperthermia and kainic acid-induced seizure activity. Mol Brain Res 71, 265–278.PubMedCrossRefGoogle Scholar
  51. Lancaster, G. I. and Febbraio, M. A. (2005) Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. J Biol Chem 280, 23349-23355.PubMedCrossRefGoogle Scholar
  52. Lancaster, G. I., Moller, K., Nielsen, B., Secher, N. H., Febbraio, M. A., and Nybo, L. (2004) Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell Stress Chaperones 9, 276–280.PubMedCrossRefGoogle Scholar
  53. Li, L., Oppenheim, R. W., and Milligan, C. E. (2001) Characterization of the execution pathway of developing motoneurons deprived of trophic support. J Neurobiol 46, 249–264.PubMedCrossRefGoogle Scholar
  54. Liao, D. F., Jin, Z. G., Baas, A. S., Daum, G., Gygi, S. P., Aebersold, R., and Berk, B. C. (2000) Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 275, 189–196.PubMedCrossRefGoogle Scholar
  55. Manzerra, P., Rush, S. J., and Brown, I. R. (1993) Temporal and spatial distribution of heat shock mRNA and protein (hsp70) in the rabbit cerebellum in response to hyperthermia. J Neurosci Res 36, 480–490.PubMedCrossRefGoogle Scholar
  56. Marshall, H. C., Ferguson, R. A., and Nimmo, M. A. (2006) Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot, humid environment. Cell Stress Chaperones 11, 129–134.PubMedCrossRefGoogle Scholar
  57. Mathew, A., Bell, A., and Johnstone, R. M. (1995) Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. Biochem J 308, 823–830.PubMedGoogle Scholar
  58. Mathur, S. K., Sistonen, L., Brown, I. R., Murphy, S. P., Sarge, K. D., and Morimoto, R. I. (1994) Deficient induction of human hsp70 heat shock gene transcription in Y79 retinoblastoma cells despite activation of heat shock factor 1. Proc Natl Acad Sci USA 91, 8695–8699.PubMedCrossRefGoogle Scholar
  59. McLaughlin, B., Hartnett, K. A., Erhardt, J. A., Legos, J. J., White, R. F., Barone, F. C., and Aizenman, E. (2003) Caspase 3 activation is essential for neuroprotection in preconditioning. Proc Natl Acad Sci USA 100, 715–720.PubMedCrossRefGoogle Scholar
  60. Milligan, C. E., Oppenheim, R. W., and Schwartz, L. M. (1994) Motoneurons deprived of trophic support in vitro require new gene expression to undergo programmed cell death. J Neurobiol 25, 1005–1016.PubMedCrossRefGoogle Scholar
  61. Miyake, K. and McNeil, P. L. (2003) Mechanical injury and repair of cells. Crit Care Med 31, S496–S501.PubMedCrossRefGoogle Scholar
  62. Mokrushin, A. A., Pavlinova, L. I., Guzhova, I. V., and Margulis, B. A. (2004) Heat-shock protein (Hsp70) protects glutamatergic synaptic transmission in cells of the rat olfactory cortex against acute anoxia in vitro. Dokl Biol Sci 394, 12–15.PubMedCrossRefGoogle Scholar
  63. Mokrushin, A. A., Pavlinova, L. I., and Plekhanov, A. Y. (2005) Heat shock protein HSP70 increases the resistance of cortical cells to glutamate excitotoxicity. Bull Exp Biol Med 140, 1–5.PubMedCrossRefGoogle Scholar
  64. Murashov, A. K., Talebian, S., and Wolgemuth, D. J. (1998) Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress. Brain Res Mol Brain Res 63, 14–24.PubMedCrossRefGoogle Scholar
  65. Negulyaev, Y. A., Vedernikova, E. A., Kinev, A. V., and Voronin, A. P. (1996) Exogenous heat shock protein hsp70 activates potassium channels in U937 cells. Biochim Biophys Acta 1282, 156–162.PubMedCrossRefGoogle Scholar
  66. Nieman, D. C. (2007) Marathon training and immune function. Sports Med 37, 412–415.PubMedCrossRefGoogle Scholar
  67. Njemini, R., Lambert, M., Demanet, C., and Mets, T. (2003) Elevated serum heat-shock protein 70 levels in patients with acute infection: use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol 58, 664–669.PubMedCrossRefGoogle Scholar
  68. Novoselova, T. V., Margulis, B. A., Novoselov, S. S., Sapozhnikov, A. M., van der, S. J., Cheetham, M. E., and Guzhova, I. V. (2005) Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem 94, 597–606.PubMedCrossRefGoogle Scholar
  69. Nylandsted, J., Gyrd-Hansen, M., Danielewicz, A., Fehrenbacher, N., Lademann, U., Hoyer-Hansen, M., Weber, E., Multhoff, G., Rohde, M., and Jaattela, M. (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200, 425–435.PubMedCrossRefGoogle Scholar
  70. Park, H. S., Lee, J. S., Huh, S. H., Seo, J. S., and Choi, E. J. (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20, 446–456.PubMedCrossRefGoogle Scholar
  71. Pittet, J. F., Lee, H., Morabito, D., Howard, M. B., Welch, W. J., and Mackersie, R. C. (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52, 611–617.PubMedCrossRefGoogle Scholar
  72. Pockley, A. G., De Faire, U., Kiessling, R., Lemne, C., Thulin, T., and Frostegard, J. (2002) Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens 20, 1815–1820.PubMedCrossRefGoogle Scholar
  73. Pockley, A. G., Shepherd, J., and Corton, J. M. (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27, 367–377.PubMedCrossRefGoogle Scholar
  74. Ritossa, F. (1963) Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp Cell Res 35, 601–607.CrossRefGoogle Scholar
  75. Ritossa, F. (1996) Discovery of the heat shock response. Cell Stress Chaperones 1, 97–98.PubMedCrossRefGoogle Scholar
  76. Ritossa, F. M. (1962) A new puffing system induced by temperature shock and DNP in Drosophila. Experientia 18, 571–573.CrossRefGoogle Scholar
  77. Robinson, M. B., Taylor, A. R., Gifondorwa, D. J., Tytell, M., and Milligan, C. E. (2008) Exogenous Hsc70, but not thermal preconditioning, confers protection to motoneurons subjected to oxidative stress. Dev Neurobiol 68, 1–17.PubMedCrossRefGoogle Scholar
  78. Robinson, M. B., Tidwell, J. L., Gould, T., Taylor, A. R., Newbern, J. M., Graves, J., Tytell, M., and Milligan, C. E. (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25, 9735–9745.PubMedCrossRefGoogle Scholar
  79. Sheller, R. A., Smyers, M. E., Grossfeld, R. M., Ballinger, M. L., and Bittner, G. D. (1998) Heat-shock protein in axoplasm: high constitutive levels and transfer of inducible isoforms from glia. J Comp Neurol 396, 1–11.PubMedCrossRefGoogle Scholar
  80. Steensberg, A., Dalsgaard, M. K., Secher, N. H., and Pedersen, B. K. (2006) Cerebrospinal fluid IL-6, HSP72, and TNF-alpha in exercising humans. Brain Behav Immun 20, 585–589.PubMedCrossRefGoogle Scholar
  81. Stroud, R. M. and Walter, P. (1999) Signal sequence recognition and protein targeting. Curr Opin Struct Biol 9, 754–759.PubMedCrossRefGoogle Scholar
  82. Taylor, A. R., Robinson, M. B., Gifondorwa, D. J., Tytell, M., and Milligan, C. E. (2007). Regulation of heat shock protein 70 release in astrocytes: Role of signaling kinases. Dev Neurobiol 67, 1817–1829.CrossRefGoogle Scholar
  83. Thompson, H. S., Maynard, E. B., Morales, E. R., and Scordilis, S. P. (2003) Exercise-induced HSP27, HSP70 and MAPK responses in human skeletal muscle. Acta Physiol Scand 178, 61–72.PubMedCrossRefGoogle Scholar
  84. Tidwell, J. L., Houenou, L. J., and Tytell, M. (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 9, 88–98.PubMedGoogle Scholar
  85. Tytell, M. (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperthermia 21, 445–455.PubMedCrossRefGoogle Scholar
  86. Tytell, M., Greenberg, S. G., and Lasek, R. J. (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363, 161–164.PubMedCrossRefGoogle Scholar
  87. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654–659.PubMedCrossRefGoogle Scholar
  88. van Eden, W., van der, Z. R., and Prakken, B. (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5, 318–330.CrossRefGoogle Scholar
  89. Vigh, L., Maresca, B., and Harwood, J. L. (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem 23, 369–374.CrossRefGoogle Scholar
  90. Voisin, P. J., Pardue, S., Macouillard, F., Yehia, G., Labouesse, J., and Morrison-Bogorad, M. (1996) Differential expression of heat shock 70 proteins in primary cultures from rat cerebellum. Brain Res 739, 215–234.PubMedCrossRefGoogle Scholar
  91. Volloch, V., Gabai, V. L., Rits, S., and Sherman, M. Y. (1999) ATPase activity of the heat shock protein hsp72 is dispensable for its effects on dephosphorylation of stress kinase JNK and on heat-induced apoptosis. FEBS Lett 461, 73–76.PubMedCrossRefGoogle Scholar
  92. Waegh, S. d. and Brady, S. T. (1989) Axonal transport of a clathrin uncoating ATPase (HSC70): a role for HSC70 in the modulation of coated vesicle assembly in vivo. J Neurosci Res 23, 433–440.PubMedCrossRefGoogle Scholar
  93. Walsh, R. C., Koukoulas, I., Garnham, A., Moseley, P. L., Hargreaves, M., and Febbraio, M. A. (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6, 386–393.PubMedCrossRefGoogle Scholar
  94. Yaglom, J. A., Gabai, V. L., Meriin, A. B., Mosser, D. D., and Sherman, M. Y. (1999) The function of HSP72 in suppression of c-Jun N-terminal kinase activation can be dissociated from its role in prevention of protein damage. J Biol Chem 274, 20223–20228.PubMedCrossRefGoogle Scholar
  95. Yenari, M. A., Liu, J., Zheng, Z., Vexler, Z. S., Lee, J. E., and Giffard, R. G. (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053, 74–83.PubMedCrossRefGoogle Scholar
  96. Yoo, C. G., Lee, S., Lee, C. T., Kim, Y. W., Han, S. K., and Shim, Y. S. (2000) Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 164, 5416–5423.PubMedGoogle Scholar
  97. Yu, Q., Kent, C. R., and Tytell, M. (2001) Retinal uptake of intravitreally injected Hsc/Hsp70 and its effect on susceptibility to light damage. Mol Vis 7, 48–56.PubMedGoogle Scholar
  98. Zhu, J., Quyyumi, A. A., Wu, H., Csako, G., Rott, D., Zalles-Ganley, A., Ogunmakinwa, J., Halcox, J., and Epstein, S. E. (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23, 1055–1059.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Michael Tytell
    • 1
    • 2
  • Mac B. Robinson
    • 1
    • 3
  • Carolanne E. Milligan
    • 1
    • 2
    • 3
  1. 1.Department of Neurobiology and AnatomyWake Forest University School of MedicineWinston-SalemUSA
  2. 2.Program in NeuroscienceWake Forest University School of MedicineWinston-SalemUSA
  3. 3.Molecular Genetics and Genomics ProgramWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations