Skip to main content

Strategies for Conferring Neuroprotection and Countering the High Threshold for Induction of the Stress Response in Motor Neurons

  • Chapter
Heat Shock Proteins and the Brain: Implications for Neurodegenerative Diseases and Neuroprotection

Part of the book series: Heat Shock Proteins ((HESP,volume 3))

  • 621 Accesses

Abstract

The higher threshold for stress-induced upregulation of heat shock genes in certain populations of neurons, including motor neurons, has implications for their preferential vulnerability to disease and poses challenges for therapeutic intervention. One approach for identifying compounds that are effective in motor neurons involves understanding the mechanisms of heat shock gene regulation and hypothesis-driven therapeutic design. Central to stress-induced activation of heat shock genes is the transcription factor Hsf1, which must be released from Hsp90 complexes, translocate to the nucleus, bind to heat shock elements, and become activated. Most known inducers and co-inducers of the heat shock response promote one or more of these steps, but not all compounds are effective in motor neurons. However, other elements in the promoters of heat shock genes and heat shock transcription factors also contribute to constitutive and stress-induced regulation of heat shock genes and are potential therapeutic targets. Another approach is to screen chemical libraries using a test system that expresses motor neuronal properties, with positive hits being validated in vivo. The most effective therapies will be those that upregulate multiple chaperones and co-chaperones that enable refolding and degradation in addition to sequestering misfolded proteins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoff, S.N., Hou, J., Linzer, D.I., and Wu, B. (1993) Regulation of the human hsp70 promoter by p53. Science 259, 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, K.A. and Kane, C.D. (1998) Ca2+/calmodulin-dependent protein kinase IV and calcium signaling. Biometals 11, 331–343.

    Article  PubMed  CAS  Google Scholar 

  • Arya, R., Mallik, M., and Lakhotia, S.C. (2007) Heat shock genes – integrating cell survival and death. J. Biosci. 32, 595–610.

    Article  PubMed  CAS  Google Scholar 

  • Balogh, G., Horvath, I., Nagy, E., Hoyk, Z., Benko, S., Bensaude, O., et al. (2005) The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J. 272, 6077–6086.

    Article  PubMed  CAS  Google Scholar 

  • Batulan, Z., Nalbantoglu, J., and Durham, H.D. (2005) Nonsteroidal anti-inflammatory drugs differentially affect the heat shock response in cultured spinal cord cells. Cell Stress Chaperon. 10, 185–196.

    Article  CAS  Google Scholar 

  • Batulan, Z., Shinder, G.A., Minotti, S., He, B.P., Doroudchi, M.M., Nalbantoglu, J., et al. (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23, 5789–5798.

    PubMed  CAS  Google Scholar 

  • Batulan, Z., Taylor, D.M., Aarons, R.J., Minotti, S., Doroudchi, M.M., Nalbantoglu, J., et al. (2006) Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol. Dis. 24, 213–225.

    Article  PubMed  CAS  Google Scholar 

  • Bechtold, D.A. and Brown, I.R. (2000) Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Mol. Brain Res. 75, 309–320.

    Article  PubMed  CAS  Google Scholar 

  • Bechtold, D.A., Rush, S.J., and Brown, I.R. (2000) Localization of the heat-shock protein Hsp70 to the synapse following hyperthermic stress in the brain. J. Neurochem. 74, 641–646.

    Article  PubMed  CAS  Google Scholar 

  • Beiswanger, C.M., Diegmann, M.H., Novak, R.F., Philbert, M.A., Greassle, T.L., Reuhl, K.R., et al. (1995) Developmental changes in the cellular distribution of glutathione and glutathione S-transferases in the murine nervous system. Neurotoxicology 16, 425–440.

    PubMed  CAS  Google Scholar 

  • Bijur, G.N. and Jope, R.S. (2000) Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3 beta in the regulation of HSF-1 activity. J. Neurochem. 75, 2401–2408.

    Article  PubMed  CAS  Google Scholar 

  • Bjork, J.K. and Sistonen, L. (2006) Clustering of heat-shock factors. Biochem. J. 395, e5–e6.

    Article  PubMed  CAS  Google Scholar 

  • Boellmann, F., Guettouche, T., Guo, Y., Fenna, M., Mnayer, L., and Voellmy, R. (2004) DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc. Natl. Acad. Sci. U.S.A. 101, 4100–4105.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, S.K., Mambula, S.S., Gray, P.J., Jr., and Theriault, J.R. (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett. PMID: 17499247.

    Google Scholar 

  • Chang, Y., Ostling, P., Akerfelt, M., Trouillet, D., Rallu, M., Gitton, Y., et al. (2006) Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev. 20, 836–847.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S. and Brown, I.R. (2007a) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperon. 12, 51–58.

    Article  CAS  Google Scholar 

  • Chen, S. and Brown, I.R. (2007b) Translocation of constitutively expressed heat shock protein Hsc70 to synapse-enriched areas of the cerebral cortex after hyperthermic stress. J. Neurosci. Res. 85, 402–409.

    Article  CAS  Google Scholar 

  • Chu, B.Y., Soncin, F., Price, B.D., Stevenson, M.A., and Calderwood, S.K. (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271, 30847–30857.

    Article  PubMed  CAS  Google Scholar 

  • Chu, B., Zhong, R., Soncin, F., Stevenson, M.A., and Calderwood, S.K. (1998) Transcriptional activity of heat shock factor 1 at 37°C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J. Biol. Chem. 273, 18640–18646.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, E., Bieschke, J., Perciavalle, R.M., Kelly, J.W., and Dillin, A. (2006) Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610.

    Article  PubMed  CAS  Google Scholar 

  • Ehrnsperger, M., Graber, S., Gaestel, M., and Buchner, J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Fujiki, M., Hikawa, T., Abe, T., Uchida, S., Morishige, M., Sugita, K., et al. (2006) Role of protein kinase C in neuroprotective effect of geranylgeranylacetone, a noninvasive inducing agent of heat shock protein, on delayed neuronal death caused by transient ischemia in rats. J. Neurotrauma 23, 1164–1178.

    Article  PubMed  Google Scholar 

  • Fukunaga, K., Ishigami, T., and Kawano, T. (2005) Transcriptional regulation of neuronal genes and its effect on neural functions: expression and function of forkhead transcription factors in neurons. J. Pharmacol. Sci. 98, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Gaestel, M., Gotthardt, R., and Muller, T. (1993) Structure and organisation of a murine gene encoding small heat-shock protein Hsp25. Gene 128, 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y., Guettouche, T., Fenna, M., Boellmann, F., Pratt, W.B., Toft, D.O., et al. (2001) Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem. 276, 45791–45799.

    Article  PubMed  CAS  Google Scholar 

  • Guzhova, I., Kislyakova, K., Moskaliova, O., Fridlanskaya, I., Tytell, M., Cheetham, M., et al. (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res. 914, 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Hargitai, J., Lewis, H., Boros, I., Racz, T., Fiser, A., Kurucz, I., et al. (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem. Biophys. Res. Commun. 307, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Hata, M. and Ohtsuka, K. (1998) Characterization of HSE sequences in human Hsp40 gene: structural and promoter analysis. Biochim. Biophys. Acta 1397, 43–55.

    PubMed  CAS  Google Scholar 

  • He, B., Meng, Y.H., and Mivechi, N.F. (1998) Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol. Cell Biol. 18, 6624–6633.

    PubMed  CAS  Google Scholar 

  • He, H., Soncin, F., Grammatikakis, N., Li, Y., Siganou, A., Gong, J., et al. (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J. Biol. Chem. 278, 35465–35475.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, K., He, J., Hirakawa, Y., Liu, W., Wang, S., and Kawabuchi, M. (2003) HSP27 is markedly induced in Schwann cell columns and associated regenerating axons. Glia 42, 1–11.

    Article  PubMed  Google Scholar 

  • Houenou, L.J., Li, L., Lei, M., Kent, C.R., and Tytell, M. (1996) Exogenous heat shock cognate protein Hsc 70 prevents axotomy-induced death of spinal sensory neurons. Cell Stress Chaperon. 1, 161–166.

    Article  CAS  Google Scholar 

  • Hsu, A.L., Murphy, C.T., and Kenyon, C. (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145.

    Article  PubMed  CAS  Google Scholar 

  • Hung, J.J., Cheng, T.J., Chang, M.D., Chen, K.D., Huang, H.L., and Lai, Y.K. (1998) Involvement of heat shock elements and basal transcription elements in the differential induction of the 70-kDa heat shock protein and its cognate by cadmium chloride in 9L rat brain tumor cells. J. Cell Biochem. 71, 21–35.

    Article  PubMed  CAS  Google Scholar 

  • Imbriano, C., Bolognese, F., Gurtner, A., Piaggio, G., and Mantovani, R. (2001) HSP-CBF is an NF-Y-dependent coactivator of the heat shock promoters CCAAT boxes. J. Biol. Chem. 276, 26332–26339.

    Article  PubMed  CAS  Google Scholar 

  • Jurivich, D.A., Sistonen, L., Kroes, R.A., and Morimoto, R.I. (1992) Effect of sodium salicylate on the human heat shock response. Science 255, 1243–1245.

    Article  PubMed  CAS  Google Scholar 

  • Kaarniranta, K., Oksala, N., Karjalainen, H.M., Suuronen, T., Sistonen, L., Helminen, H.J., et al. (2002) Neuronal cells show regulatory differences in the hsp70 gene response. Brain Res. Mol. Brain Res. 101, 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Kallio, M., Chang, Y., Manuel, M., Alastalo, T.P., Rallu, M., Gitton, Y., et al. (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J. 21, 2591–2601.

    Article  PubMed  CAS  Google Scholar 

  • Kalmar, B., Burnstock, G., Vrbova, G., and Greensmith, L. (2002a) The effect of neonatal nerve injury on the expression of heat shock proteins in developing rat motoneurones. J. Neurotrauma 19, 667–679.

    Article  Google Scholar 

  • Kalmar, B., Burnstock, G., Vrbova, G., Urbanics, R., Csermely, P., and Greensmith, L. (2002b) Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp. Neurol. 176, 87–97.

    Article  CAS  Google Scholar 

  • Katsuno, M., Sang, C., Adachi, H., Minamiyama, M., Waza, M., Tanaka, F., et al. (2005) Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc. Natl. Acad. Sci. U.S.A. 102, 16801–16806.

    Article  PubMed  CAS  Google Scholar 

  • Kiaei, M., Kipiani, K., Petri, S., Chen, J., Calingasan, N.Y., and Beal, M.F. (2005) Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis. 2, 246–254.

    Article  PubMed  CAS  Google Scholar 

  • Kieran, D., Kalmar, B., Dick, J.R., Riddoch-Contreras, J., Burnstock, G., and Greensmith, L. (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat. Med. 10, 402–405.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.S., Skurk, C., Maatz, H., Shiojima, I., Ivashchenko, Y., Yoon, S.W., et al. (2005) Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression. FASEB J. 19, 1042–1044.

    PubMed  CAS  Google Scholar 

  • Kuntz, C., Kinoshita, Y., Beal, M.F., Donehower, L.A., and Morrison, R.S. (2000) Absence of p53: No effect in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp. Neurol. 165, 184–190.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B.S., Chen, J., Angelidis, C., Jurivich, D.A., and Morimoto, R.I. (1995) Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular change. Proc. Natl. Acad. Sci. U.S.A. 92, 7207–7211.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Shinobu, L.A., Ward, C.M., Young, D., and Cleveland, D.W. (2005) Elevation of the Hsp70 chaperone does not affect toxicity inmouse models of familial amyotrophic lateral sclerosis. J. Neurochem. 93, 875–882.

    Article  PubMed  CAS  Google Scholar 

  • Loison, F., Debure, L., Nizard, P., Le Goff, P., Michel, D., and Le Drean, Y. (2006) Up-regulation of the clusterin gene after proteotoxic stress: implication of HSF1-HSF2 heterocomplexes. Biochem. J. 395, 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Longo, V.D. and Fabrizio, P. (2002) Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol. Life Sci. 59, 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Lu, A., Ran, R.Q., Clark, J., Reilly, M., Nee, A., and Sharp, F.R. (2002) 17-beta-estradiol induces heat shock proteins in brain arteries and potentiates ischemic heat shock protein induction in glia and neurons. J. Cereb. Blood Flow Metab. 22, 183–195.

    Article  PubMed  CAS  Google Scholar 

  • Maatkamp, A., Vlug, A., Haasdijk, E., Troost, D., French, P.J., and Jaarsma, D. (2004) Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS-SOD1 mice. Eur. J. Neurosci. 20, 14–28.

    Article  PubMed  Google Scholar 

  • Manzerra, P. and Brown, I.R. (1992) Expression of heat shock genes (hsp70) in the rabbit spinal cord: Localization of constitutive and hyperthermia-inducible mRNA species. J. Neurosci. Res. 31, 606–615.

    Article  PubMed  CAS  Google Scholar 

  • Manzerra, P. and Brown, I.R. (1996) The neuronal stress response: nuclear translocation of heat shock proteins as an indicator of hyperthermic stress. Exp. Cell Res. 229, 35–47.

    Article  PubMed  CAS  Google Scholar 

  • Manzerra, P., Rush, S.J., and Brown, I.R. (1997) Tissue-specific differences in heat shock protein hsc70 and hsp70 in the control and hyperthermic rabbit. J. Cell Physiol. 170, 130–137.

    Article  PubMed  CAS  Google Scholar 

  • Marcuccilli, C.J., Mathur, S.K., Morimoto, R.I., and Miller, R.J. (1996) Regulatory differences in the stress response of hippocampal neurons and glial cells after heat shock. J. Neurosci. 16, 478–485.

    PubMed  CAS  Google Scholar 

  • Mathew, A., Mathur, S.K., and Morimoto, R.I. (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 18, 5091–5098.

    PubMed  CAS  Google Scholar 

  • Mathew, A., Mathur, S.K., Jolly, C., Fox, S.G., Kim, S., and Morimoto, R.I. (2001) Stress-specific activation and repression of heat shock factors 1 and 2. Mol. Cell. Biol. 21, 7163–7171.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M.P., Nikolay, R., and Bukau, B. (2002) Aha, another regulator for hsp90 chaperones. Mol. Cell 10, 1255–1256.

    Article  PubMed  CAS  Google Scholar 

  • McKinnell, I.W. and Rudnicki, M.A. (2004) Molecular mechanisms of muscle atrophy. Cell 119, 907–910.

    Article  PubMed  CAS  Google Scholar 

  • McLean, J.R., Sanelli, T.R., Leystra-Lantz, C., He, B.P., and Strong, M.J. (2005) Temporal profiles of neuronal degeneration, glial proliferation, and cell death in hNFL(+/+) and NFL(-/-)mice. Glia 52, 59–69.

    Article  PubMed  Google Scholar 

  • McMillan, D.R., Xiao, X., Shao, L., Graves, K., and Benjamin, I.J. (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273, 7523–7528.

    Article  PubMed  CAS  Google Scholar 

  • Miranti, C.K., Ginty, D.D., Huang, G., Chatila, T., and Greenberg, M.E. (1995) Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol. Cell Biol. 15, 3672–3684.

    PubMed  CAS  Google Scholar 

  • Morimoto, R.I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796.

    Article  PubMed  CAS  Google Scholar 

  • Morley, J.F. and Morimoto, R.I. (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, G., Battistini, S., Zhang, P., and Tanguay, R.M. (2004a) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J. Biol. Chem. 279, 43382–43385.

    Article  CAS  Google Scholar 

  • Morrow, G., Samson, M., Michaud, S., and Tanguay, R.M. (2004b) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J. 18, 598–599.

    CAS  Google Scholar 

  • Motoyoshi, N., Sakurai, M., Hayashi, T., Aoki, M., Abe, K., Itoyama, Y., et al. (2001) Establishment of a local cooling model against spinal cord ischemia representing prolonged induction of heat shock protein. J. Thorac. Cardiovasc. Surg. 122, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Murashov, A.K., Ul, H., I, Hill, C., Park, E., Smith, M., Wang, X., et al. (2001) Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. Brain Res. Mol. Brain Res. 93, 199–208.

    Google Scholar 

  • Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., et al. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Ostling, P., Bjork, J.K., Roos-Mattjus, P., Mezger, V., and Sistonen, L. (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J. Biol. Chem. 282, 7077–7086.

    Article  PubMed  CAS  Google Scholar 

  • Pan, T., Li, X., Xie, W., Jankovic, J., and Le, W. (2005) Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS Lett. 579, 6716–6720.

    Article  PubMed  CAS  Google Scholar 

  • Panaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J.K., Singh, S., et al. (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307–1318.

    Article  PubMed  CAS  Google Scholar 

  • Patel, Y.J., Payne, S., De Belleroche, J., and Latchman, D.S. (2005) Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells. Brain Res. Mol. Brain Res. 134, 256–274.

    Article  PubMed  CAS  Google Scholar 

  • Pratt, W.B. and Toft, D.O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228, 111–133.

    CAS  Google Scholar 

  • Proctor, C.J., Soti, C., Boys, R.J., Gillespie, C.S., Shanley, D.P., Wilkinson, D.J., et al. (2005) Modelling the actions of chaperones and their role in ageing. Mech. Ageing Dev. 126, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi, M.M., Hayden, D., Urbinelli, L., Ferrante, K., Newhall, K., Myers, D., et al. (2006) Analysis of factors that modify susceptibility and rate of progression in amyotrophic lateral sclerosis (ALS). Amyotroph. Lateral. Scler. 7, 173–182.

    Article  PubMed  Google Scholar 

  • Rieger, T.R., Morimoto, R.I., and Hatzimanikatis, V. (2005) Mathematical modeling of the eukaryotic heat-shock response: dynamics of the hsp70 promoter. Biophys. J. 88, 1646–1658.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, M.B., Tidwell, J.L., Gould, T., Taylor, A.R., Newbern, J.M., Graves, J., et al. (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J. Neurosci. 25, 9735–9745.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, H., Lee, J., Zaman, K., Kubilis, J., Ferrante, R.J., Ross, B.D., et al. (2003) Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. J. Neurosci. 23, 3597–3606.

    PubMed  CAS  Google Scholar 

  • Sakurai, M., Aoki, M., Abe, K., Sadahiro, M., and Tabayashi, K. (1996) Dissociation of HSP72 and HSC73 heat shock mRNA inductions after spinal cord ischemia in rabbit. Neurosci. Lett. 217, 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, M., Aoki, M., Abe, K., Sadahiro, M., and Tabayashi, K. (1997) Selective motor neuron death and heat shock protein induction after spinal cord ischemia in rabbits. J. Thorac. Cardiovasc. Surg. 113, 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, M., Hayashi, T., Abe, K., Aoki, M., Sadahiro, M., and Tabayashi, K. (1998) Enhancement of heat shock protein expression after transient ischemia in the preconditioned spinal cord of rabbits. J. Vasc. Surg. 27, 720–725.

    Article  PubMed  CAS  Google Scholar 

  • Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., et al. (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412.

    Article  PubMed  CAS  Google Scholar 

  • Shih, A.Y., Johnson, D.A., Wong, G., Kraft, A.D., Jiang, L., Erb, H., et al. (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J. Neurosci. 23, 3394–3406.

    PubMed  CAS  Google Scholar 

  • Sistonen, L., Sarge, K.D., and Morimoto, R.I. (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell Biol. 14, 2087–2099.

    PubMed  CAS  Google Scholar 

  • Tagawa, K., Marubuchi, S., Qi, M.L., Enokido, Y., Tamura, T., Inagaki, R., et al. (2007) The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes. J. Neurosci. 27, 868–880.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, H., Kobayashi, Y., Yoshihara, T., Niwa, J., Doyu, M., Ohtsuka, K., et al. (2002) Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res. 949, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Tang, B.L. (2006) SIRT1, neuronal cell survival and the insulin/IGF-1 aging paradox. Neurobiol. Aging 27, 501–505.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D.M., De Koninck, P., Minotti, S., and Durham, H.D. (2007a) Manipulation of protein kinases reveals different mechanisms for upregulation of heat shock proteins in motor neurons and non-neuronal cells. Mol. Cell Neurosci. 34, 20–33.

    Article  CAS  Google Scholar 

  • Taylor, D.M., Tradewell, M.L., Minotti, S., and Durham, H.D. (2007b) Characterizing the role of Hsp90 in production of heat shock proteins in motor neurons reveals a suppressive effect of wild-type Hsf1. Cell Stress and Chaperones 12, 151–162.

    Article  CAS  Google Scholar 

  • Tidwell, J.L., Houenou, L.J., and Tytell, M. (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperon. 9, 88–98.

    CAS  Google Scholar 

  • Tonkiss, J. and Calderwood, S.K. (2005) Regulation of heat shock gene transcription in neuronal cells. Int. J. Hyperthermia 21, 433–444.

    Article  PubMed  CAS  Google Scholar 

  • Torok, Z., Tsvetkova, N.M., Balogh, G., Horvath, I., Nagy, E., Penzes, Z., et al. (2003) Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase. Proc. Natl. Acad. Sci. U.S.A. 100, 3131–3136.

    Article  PubMed  CAS  Google Scholar 

  • Trinklein, N.D., Chen, W.C., Kingston, R.E., and Myers, R.M. (2004) Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperon. 9, 21–28.

    CAS  Google Scholar 

  • Trougakos, I.P. and Gonos, E.S. (2006) Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases. Free Radic. Res. 40, 1324–1334.

    Article  PubMed  CAS  Google Scholar 

  • Tytell, M., Greenberg, S.G., and Lasek, R.J. (1986) Heat shock-like protein is transferred from glia to axon. Brain Res. 363, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Vigh, L., Maresca, B., and Harwood, J.L. (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem. Sci. 23, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Vigh, L., Torok, Z., Balogh, G., Glatz, A., Piotto, S., and Horvath, I. (2007) Membrane-regulated stress response: a theoretical and practical approach. Adv. Exp. Med. Biol. 594, 114–131.

    Article  PubMed  Google Scholar 

  • Vlug, A.S., Teuling, E., Haasdijk, E.D., French, P., Hoogenraad, C.C., and Jaarsma, D. (2005) ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur. J. Neurosci. 22, 1881–1894.

    Article  PubMed  Google Scholar 

  • Voellmy, R. (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperon. 9, 122–133.

    Article  CAS  Google Scholar 

  • Wagstaff, M.J.D., Smith, J., Collaco-Moraes, Y., De Belleroche, J.S., Voellmy, R., Coffin, R.S., et al. (1998) Delivery of a constitutively active form of the heat shock factor using a virus vector protects neuronal cells from thermal or ischaemic stress but not apoptosis. Eur. J. Neurosci. 10, 3343–3350.

    Article  PubMed  CAS  Google Scholar 

  • Walker, G.A. and Lithgow, G.J. (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell. 2, 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Khaleque, M.A., Zhao, M.J., Zhong, R., Gaestel, M., and Calderwood, S.K. (2006) Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J. Biol. Chem. 281, 782–791.

    Article  PubMed  CAS  Google Scholar 

  • Westerheide, S.D., Bosman, J.D., Mbadugha, B.N., Kawahara, T.L., Matsumoto, G., Kim, S., et al. (2004) Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 279, 56053–56060.

    Article  PubMed  CAS  Google Scholar 

  • Wilke, N., Sganga, M.W., Gayer, G.G., Hsieh, K.P., and Miles, M.F. (2000) Characterization of promoter elements mediating ethanol regulation of hsc70 gene transcription. J. Pharmacol. Exp. Ther. 292, 173–180.

    PubMed  CAS  Google Scholar 

  • Williams, G.T. and Morimoto, R.I. (1990) Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol. Cell Biol. 10, 3125–3136.

    PubMed  CAS  Google Scholar 

  • Wu, C. (1995) Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11, 441–469.

    Article  PubMed  CAS  Google Scholar 

  • Wu, B.J., Kingston, R.E., and Morimoto, R.I. (1986) Human HSP70 promoter contains at least two distinct regulatory domains. Proc. Natl. Acad. Sci. U.S.A. 83, 629–633.

    Article  PubMed  CAS  Google Scholar 

  • Xia, H., Ikata, T., Katoh, S., Rokutan, K., Saito, S., Kawai, T., et al. (1998) Whole body hyperthermia selectively induces heat shock protein 72 in neurons of the rat spinal cord. Neurosci. Lett. 258, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Xia, W. and Voellmy, R. (1997) Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J. Biol. Chem. 272, 4094–4102.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, X., Zuo, X., Davis, A.A., McMillan, D.R., Curry, B.B., Richardson, J.A., et al. (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943–5952.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Y., Zhong, R., Chen, C., and Calderwood, S.K. (2003) Heat shock factor 1 contains two functional domains that mediate transcriptional repression of the c-fos and c-fms genes. J. Biol. Chem. 278, 4687–4698.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, K., Takahashi, N., Ooie, T., Kaneda, K., Yoshimatsu, H., and Saikawa, T. (2003) Role of protein kinase C in geranylgeranylacetone-induced expression of heat-shock protein 72 and cardioprotection in the rat heart. J. Mol. Cell Cardiol. 35, 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Yan, D., Saito, K., Ohmi, Y., Fujie, N., and Ohtsuka, K. (2004) Paeoniflorin, a novel heat shock protein-inducing compound. Cell Stress Chaperon. 9, 378–389.

    Article  CAS  Google Scholar 

  • Yukawa, K., Tanaka, T., Tsuji, S., and Akira, S. (1998) Expressions of CCAAT/Enhancer-binding proteins beta and delta and their activities are intensified by cAMP signaling as well as Ca2+/calmodulin kinases activation in hippocampal neurons. J. Biol. Chem. 273, 31345–31351.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Q., Wang, J., Levichkin, I.V., Stasinopoulos, S., Ryan, M.T., and Hoogenraad, N.J. (2002) A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411–4419.

    Article  PubMed  CAS  Google Scholar 

  • Zou, J., Guo, Y., Guettouche, T., Smith, D.F., and Voellmy, R. (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, J., Rungger, D., and Voellmy, R. (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell Biol. 15, 4319–4330.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Durham, H.D. (2008). Strategies for Conferring Neuroprotection and Countering the High Threshold for Induction of the Stress Response in Motor Neurons. In: Asea, A.A., Brown, I.R. (eds) Heat Shock Proteins and the Brain: Implications for Neurodegenerative Diseases and Neuroprotection. Heat Shock Proteins, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8231-3_10

Download citation

Publish with us

Policies and ethics