• G. M. Zuppi


地下水是世界上开采最多的自然资源。人类的日常用水, 如饮用、做饭和卫生用水, 一半以上都来自地下水; 农业灌溉和工业用水的 30%也来自地下水。鉴于全球对这种有限而宝贵的资源的巨大依赖性, 我们有理由认为, 地下水问题将会引起全世界的极大关注。虽然人类对地下水的依赖性在增加, 来自科学和管理方面的关注也在上升, 但是与地表水相比, 还一直都处于次要的地位, 在立法机构和决策者的眼中更是如此。为了满足饮用水、农业和工业用水以及维护“绿色”水库—高地森林和湿地的需求, 人类对地下水的依赖性与日俱增。由于在确定地下水径流方面存在不确定性, 加之地下水与地表水之间的水文关系也存在不确定性, 随着人类对地下水资源依赖性的增加, 由地下水数量和质量引起的冲突也必然会加剧。


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramovitz J., 2001. Unnatural Disasters. Worldwatch Paper 158, Worldwatch Institute, Washington D.C.Google Scholar
  2. Araguás y Araguás L., Custodio E. and Manzano M.S., (eds.), 2005. Groundwater and saline intrusion. Selected papers from the 18th Salt Water Intrusion Meeting. Instituto Geológico y Minero de España, Madrid, Spain, Hidrogeología y Aguas Subterráneas Series, 15, p. 726.Google Scholar
  3. Aureli A. and Ganoulis J., 2005. The Unesco project on internationally aquifer resources management (UNESCO-ISARM). Overview and recent developments UNESCO-ISARM-MED. Report of a consultative meeting: “Key issues for sustainable management of transboundary aquifers in the Mediterranean and in South Eastern Europe (SEE)”, Thessaloniki, Greece, 21st – 23rd October 2004.Google Scholar
  4. Campana M., 2005. Foreword: Transboundary Groundwater. Groundwater, 43, 5, pp. 646–650.Google Scholar
  5. Chilton P.J. and Foster S.S.D., 1995. Hydrogeological characterisation and water-supply potential of basement aquifers in Tropical Africa. Hydrogeology Journal, 3, 1, 36–49, DOI 10.1007/s100400050061.CrossRefGoogle Scholar
  6. Custodio E., 2002. Aquifer overexploitation: what does it mean? Hydrogeology Journal, 10, 2, 254–277, DOI 10.1007/s10040-002-0188-6.CrossRefGoogle Scholar
  7. Custodio E. and Gurgui A. (eds.), 1989. Groundwater Economics. Selected Paper from a UN Symposium Held in Barcelona, Spain. Elsevier. Amsterdam, p. 625.Google Scholar
  8. Diersch H-J. G. and Kolditz O, 2002. Variable-density flow and transport in porous media: approaches and challenges. Advances in Water Resources, 25, 8–12, pp. 899–944.CrossRefGoogle Scholar
  9. Dijon R. and Custodio E., 1992. Groundwater overexploitation in developing countries: report of an interregional workshop (Las Palmas de Gran Canaria, Canary Islands, Spain). United Nations Department of Technical Cooperation for Development, New York. Doc UN INT/90/R43, p. 109.Google Scholar
  10. Edmunds M. W. and Gaye C. B., 1994. Estimating the Spatial Variability of Groundwater Recharge in the Sahel Using Chloride. Journal of Hydrology, 156, pp. 47–59.CrossRefGoogle Scholar
  11. Foster S.S.D. and Chilton P.J., 2003. Groundwater: the processes and global significance of aquifer degradation, Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 1440, 1957–1972, DOI 10.1098/rstb.2003.1380.CrossRefGoogle Scholar
  12. Foster S.S.D., Chilton J., Moencg M., Cardy F. and Schiffler M., 2000. Groundwater in rural development. World Bank Technical Paper NO. 463, World Bank, Washington D.C, p. 101.Google Scholar
  13. Foster S., Garduno H, Evans R., Olson D., Tian Y., Zhang W. and Han Z., 2004. Quaternary Aquifer of the North China Plain — assessing and achieving groundwater resource sustainability. Hydrogeology Journal, 12, 81–93, 10.1007/s10040-003-0300-6.CrossRefGoogle Scholar
  14. Freeze A.R. and Cherry J.A., 1979. Groundwater. Prentice Hall, p. 609.Google Scholar
  15. Ghassemi F., Jakeman A.J. and Nix H.A., 1995. Salinization of Land and Water Resources: Human Causes, Extent, Management and Case Studies. New South Wales Press, Sydney, Australia, p. 520.Google Scholar
  16. Gibson J. and Aggarwal P., 2001. Revisiting climate changes. Isotopes studies open scientific windows to the past. IAEA Bulletin, IAEA, Vienna, 43, 2, pp. 2–5.Google Scholar
  17. Hayton R.D., 1982. The Law of International Aquifers. Natural Resources Journal, 22, 1, pp. 71–94.Google Scholar
  18. Hayton R. and Utton A.E., 1989. Transboundary groundwaters: The Bellagio draft treaty. Natural Resources Journal 29, pp. 663–722.Google Scholar
  19. Holzer T.L., 1981. Preconsolidation Stress of Aquifer Systems in Areas of Induced Land Subsidence. Water Resources Research, 17, 3, pp. 693–704.CrossRefGoogle Scholar
  20. IWMI — International Water Management Institute, 2000. Strategic Plan 2000–2005. Improving Water and Land Resources Management for Food, Livelihoods and Nature, p. 30.Google Scholar
  21. Jarvis T., Giordano M., Puri S., Matsumoto K. and Wolf A., 2005. International Borders, Groundwater Flow, Hydroschizophrenia. Groundwater, 43, 5, pp. 764–770.CrossRefGoogle Scholar
  22. Jones I.C. and Banner J.L., 2003. Estimating recharge thresholds in tropical karst island aquifers: Barbados, Puerto Rico and Guam. Journal of Hydrology, 278, 1–4, pp. 131–143.CrossRefGoogle Scholar
  23. Llamas R., 2004. Water and ethics: Use of groundwater. Series on Water and Ethics, Essay 7, Unesco, Paris, p. 34.Google Scholar
  24. Lloyd J.W., 1994. Groundwater Management problems in the Developing World, Hydrogeology Journal, 2, 4, 35–48, DOI 10.1007/s100400050042.CrossRefGoogle Scholar
  25. Lloyd J.W., 1998. A changing approach to arid-zone groundwater resources in developing countries? In: Gambling with groundwater: physical, chemical and biological aspects of aquifer-stream relations. van Brahana et al. (eds.). International Association of Hydrogeologists, Las Vegas, pp. 7–12.Google Scholar
  26. Ma J.Z., Wang X.S. and Edmunds W M., 2005. The characteristics of groundwater resources and their changes under the impacts of human activity in the arid North-West China — A case study of the Shiyang river basin. J. Arid Environments, 61: pp. 277–295.CrossRefGoogle Scholar
  27. Margat J., 1993. The overexploitation of aquifers. In: Selected Papers on Aquifer Overexploitation, Simmers et al. (eds.). International Association of Hydrogeologists, Heise, Hannover, Vol. 3, pp. 29– 40.Google Scholar
  28. Matson P.A., Parton W.J., Power A.G. and Swift M.J., 1997. Agricultural Intensification and Ecosystem Properties. Science, 277, 5325, 504–509, DOI: 10.1126/science.277.5325.504.CrossRefGoogle Scholar
  29. Mazor E., 1995. Stagnant aquifer concept Part 1. Large-scale artesian systems — Great Artesian Basin, Australia. Journal of Hydrology, 173, 1–4, pp. 219–240.CrossRefGoogle Scholar
  30. Milnes E. and Renard P., 2004. The problem of salt recycling and seawater intrusion in coastal irrigated plains: an example from the Kiti aquifer (Southern Cyprus). Journal of Hydrology, 288, 3–4, pp. 327–343.CrossRefGoogle Scholar
  31. Moncaster S.J., Bottrell S.H., Tellam J.H., Lloyd J.W. and Konhauser K.O., 2000. Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. Journal of Contaminant Hydrology, 43, 2, pp. 147–163.CrossRefGoogle Scholar
  32. Morris B.L., Lawrence A.R.L., Chilton P.J., Adams B., Calow R.C. and Klinck B.A., 2003. Groundwater and its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management. Early Warning and Assessment. Report Series RS.03-3. United Nations Environment Programme, Nairobi, Kenya, p. 138.Google Scholar
  33. Puri S. and Aureli A., 2005. Transboundary Aquifers: A Global Program to Assess, Evaluate, and Develop Policy. Groundwater, 43, 5, pp. 661–668.CrossRefGoogle Scholar
  34. Rivera A., Allen D.A. and Maathuis H, 2004. Climate variability and change-Groundwater, Chapter 10 in Environment Canada, Threats to the Availability of Water in Canada, Report No. 3, National Water Research Institute, Burlington, Ontario, 2004, pp. 89–95.Google Scholar
  35. Rossi G., Benedini M., Tsakiris G. and Giakoumakis S., 1992. On regional drought estimation and analysis, Water Resources Management, 6, 4, 249–277, DOI 10.1007/BF00872280.CrossRefGoogle Scholar
  36. Salama R.B., Otto C.J. and Fitzpatrick R.W., 1999. Contributions of groundwater conditions to soil and water salinization, Hydrogeology Journal, 7, 1, 46–64, DOI 10.1007/s100400050179.CrossRefGoogle Scholar
  37. Salman S. M. A., 1999. Groundwater: Legal and Policy Perspectives. World Bank Technical Paper NO. 456, World Bank, Washington D.C., p. 260.CrossRefGoogle Scholar
  38. Sherif M.M. and Hamza K.I., 2001. Mitigation of Seawater Intrusion by Pumping Brackish Water, Transport in Porous Media, 43, 1, 29–44,, DOI 10.1023/A:1010601208708.CrossRefGoogle Scholar
  39. Sherif M.M. and Singh V. P., 1996. Saltwater Intrusion, in “Hydrology of Disasters”, Book Series: Water Science and Technology Library, 18, 269–319. Kluwer Academic Publishers, The Netherlands.Google Scholar
  40. Simmers I. (ed.), 1988. Estimation of Natural Groundwater Recharge NATO ASI Series. Series C: Mathematical and Physical Sciences, D. Reidel Publishing Company, Dordrecht, The Netherlands, p. 510.Google Scholar
  41. Simmers I (ed.), 1997. Recharge of phreatic aquifers in (semi-)arid areas. IAH Int. Contrib. Hydrogeol. 19, AA Balkema, Rotterdam, p. 277.Google Scholar
  42. UNESCO-ISARM, 2004. Managing Shared Aquifer Resources in Africa, Bo Appelgren (ed.), Paris, UNESCO, IHP-VI, Series in Groundwater, No. 8.Google Scholar
  44. U.S. GEOLOGICAL SURVEY (USGS), 1998. Groundwater and surface water a single resource. U.S. Geological Survey Circular 1139. Denver, Colorado, USA, p. 77.Google Scholar
  45. Vellinga P. and Leatherman S.P., 1989. Sea level rise, consequences and policies, Climatic Change, 15, 1, 175–189, DOI 10.1007/BF00138851.CrossRefGoogle Scholar
  46. De Vries J. and Simmers I., 2002. Groundwater recharge: an overview of processes and challenges, Hydrogeology Journal, 10, 1, 5–7, DOI 10.1007/s10040-001-0171-7.CrossRefGoogle Scholar
  47. Wichelns D., 2004. The policy of virtual water can be enhanced by considering comparative advantages. Agricultural Water Management, 66, pp. 49–63.CrossRefGoogle Scholar
  48. Zhou Y. and Tol R.S.J., 2005. Evaluating the costs of desalination and water transport. Water Resource Research, 41, 3, 10.1029–10.1035.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • G. M. Zuppi
    • 1
  1. 1.Ca’ Foscari 大学环境科学系威尼斯意大利

Personalised recommendations