Skip to main content

Fully-Isotropic Parallel Mechanisms - An Innovative Concept for Haptic Devices

  • Chapter
Product Engineering

In the early 1990s haptics emerge from virtual reality which is an advanced form of human-computer interaction (as opposed to keyboard, mouse and monitor) providing a virtual environment (VE) that we can explore through direct interaction with our senses. Haptics are emerging as effective interaction aids for improving the realism of virtual worlds. To be able interact with an environment, there must be feedback. For example, the user should be able to touch a virtual object and feel a response from it. This type of feedback is called haptic feedback [8, 9, 10, 64]. The confluence of several emerging technologies made virtualized haptics, or computer haptics, possible. Much like computer graphics, computer haptics enables the display of simulated objects to humans in an interactive manner. However, computer haptics uses a display technology through which objects can be physically palpated. This new sensory display modality presents information by exerting controlled forces on the human hand through a haptic interface (rather than, as in computer graphics, via light from a visual display device). These forces depend on the physics of me chanical contact. The characteristics of interest in these forces depend on the response of the sensors in the human hand and other body parts (rather than on the eye’s sensitivity to brightness, colour, motion, and so on). Unlike computer graphics, haptic interaction is bidirectional, with energy and information flows both to and from the user. The combination of high-performance force-controllable haptic interfaces, computational geometric modelling and collision techniques, cost-effective processing and memory, and an understanding of the perceptual needs of the human haptic system allow us to assemble computer haptic systems that can display objects of sophisticated complexity and behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams RJ (1999) Stable haptic interaction with virtual environments, Ph.D. Thesis, University of Washington, Dept Electrical Engineering

    Google Scholar 

  2. An J, Kwon D-S (2005) Control of multiple DoF hybrid haptic interface with active/passive actuators. In: Proc IEEE/RSJ Int Conf Intelligent Robots and Systems, Edmonton, pp 2556-2561

    Google Scholar 

  3. Angeles J (1997) Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, Springer, New York

    Google Scholar 

  4. Avizzano CA, Raspolli M, Marcheschi S, Bergamasco M (2005) Haptic desktop for office automation and assisted design. In: Proc IEEE Int Conf Robotics and Autom, pp 4086-4091

    Google Scholar 

  5. Avizzano CA, Raspolli M; Fontana M, Frisoli A, Bergamasco M, Design of haptic interfaces. Enactive Network (https://www.enactivenetwork.org)

  6. Birglen L, Gosselin C, Pouliot N, Monsarrat B, Laliberté T (2002) SHaDe, A new 3-DoF haptic device. IEEE Trans Robotics and Autom 18(2):166-175

    Article  Google Scholar 

  7. Book YJ, Swanson DK (2004) Reach out and touch someone: controlling haptic manipulators near and far. Annual Reviews in Control 28:87-95

    Google Scholar 

  8. Burdea G (1996) Force and touch feedback for VR, Wiley, New York

    Google Scholar 

  9. Burdea G, Coiffet P (1993) La réalité virtuelle, Hermès, Paris

    Google Scholar 

  10. Burdea G, Coiffet P (2003) Virtual reality technology, Wiley, New York

    Google Scholar 

  11. Campion G, Wang Q, Hayward V (2005) The Pantograph Mk-II: a haptic instrument. In: Proc IEEE/RSJ Int Conf Intelligent Robots and Systems, Edmonton, pp 723-728

    Google Scholar 

  12. Carricato M, Parenti-Castelli V (2002) Singularity-free fully-isotropic translational parallel mechanisms. Int. Journal of Robotics Research 21(2):161-174

    Article  Google Scholar 

  13. Choi H, Kwon D-S, Kim M-S, Design of novel haptic mouse and its applications. In: Proc 2003 IEEE/RSJ, Int Conf Intelligent Robots and Systems, Las Vegas, pp 2260-2265

    Google Scholar 

  14. Clavel R (1990) Device for the movement and positioning of an element in space, US Patent 4976582

    Google Scholar 

  15. Colgate JE, Schenkel GG (1997) Passivity of a class of sampled-data systems: application to haptic interfaces. J Robotic Systems 14 (1):37-47

    Article  Google Scholar 

  16. Constantinescu D, Chau I, DiMaio SP, Filipozzi L, Salcudean SE, Ghassemi F (2000) Haptic rendering of planar rigid-body motion using a redundant parallel mechanism. In: Proc EEE Int Conf Robotics and Autom, pp 2440-2445

    Google Scholar 

  17. Fattah A, Hasan Ghasemi AM (2002) Isotropic design of spatial parallel manipulators. Int Journal of Robotics Research 21(9):811-824

    Article  Google Scholar 

  18. Faulring EL, Colgate JE, Peshkin MA (2004) A High Performance 6-DoF haptic cobot. In:Proc IEEE Int Conf Robotics and Autom, New Orleans, pp 1980-1985

    Google Scholar 

  19. Frisoli A, Checcacci D, Salsedo F, Bergamasco M (2000) Translating inparallel actuated mechanisms for haptic feedback. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, ASME Int Mech Eng Congress and Exposition, Orlando

    Google Scholar 

  20. Girone M, Burdea G, Bouzit M, Popescu V (2001) A Stewart platform-based system for ankle telerehabilitation. Autonomous Robots 10:203-212

    Article  MATH  Google Scholar 

  21. Gogu G (2002) Structural synthesis of parallel robotic manipulators with decoupled motions, Internal Report ROBEA-MAX-CNRS

    Google Scholar 

  22. Gogu G (2004) Structural synthesis of fully-isotropic translational paral-lel robots via theory of linear transformations. European Journal of MechanicsA/Solids 23(6): 1021-1039

    Article  MATH  Google Scholar 

  23. Gogu G (2004) Fully-isotropic over-constrained planar parallel mani-pulators. In: Proc IEEE/RSJ Intl Conf Intelligent Robots and Systems, Sendai, pp. 3519-3524

    Google Scholar 

  24. Gogu G (2004) Fully-isotropic T3R1-type parallel manipulators. In: Lenarčič J and Galletti C (eds) On Advances in Robot Kinematics, Kluwer, Dordrecht, pp 265-272

    Google Scholar 

  25. Gogu G (2005) Singularity-free fully-isotropic parallel manipulators with Schönflies motions. In: Proc 12th Int Conf Advanced Robotics, Seattle, pp 194-201

    Google Scholar 

  26. Gogu G (2005) Fully-isotropic over-constrained parallel wrists with two degrees of freedom. In: Proc IEEE Int Conf Robotics and Autom, Barcelona, pp 4025-4030

    Google Scholar 

  27. Gogu G (2005) Fully-isotropic T1R2-type parallel robots with three degrees of freedom. In: Proc Int Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach

    Google Scholar 

  28. Gogu G (2005) Fully-isotropic parallel robots with four degrees of freedom T2R2-type. In: Proc IEEE/RSJ Int Conf Intelligent Robots and Systems, Edmonton, pp 1190-1195

    Google Scholar 

  29. Gogu G (2005) Evolutionary morphology: a structured approach to inventive engineering design. In: Bramley A, Brissaud D, Coutellier D, McMahon C (eds) Advances in Integrated Design and Manufacturing in Mechanical Engineering, Springer, Dordrecht, pp 389-402

    Chapter  Google Scholar 

  30. Gogu G (2006) Fully-isotropic parallel manipulators with Schönflies motions and complex legs with rhombus loops. In: Proc IEEE Int Conf on Robotics and Automation, Orlando, pp 1147-1152

    Google Scholar 

  31. Gogu G (2006) Fully-isotropic parallel manipulators with five degrees of freedom. Proc IEEE Int Conf Robotics and Autom, Orlando, 1141-1146

    Google Scholar 

  32. Gogu G (2006) Fully-isotropic T3R2-type parallel manipulators. In: Proc IEEE Int Conf on Robotics, Automation and Mecatronics, Bangkok, 248-253

    Google Scholar 

  33. Gogu G (2006) Fully-isotropic hexapods. In: Lenarčič J, Roth B (eds) Advances in Robot Kinematics, Springer, Dordrecht, pp 323-330

    Chapter  Google Scholar 

  34. Gogu G (2007) Fully-isotropic three-degrees-of-freedom parallel wrists. In: Proc IEEE Int Conf on Robotics and Autom, Roma, pp 895-900

    Google Scholar 

  35. Gogu G (2007) Structural synthesis of fully-isotropic parallel robots with Schönflies motions via theory of linear transformations and evolutionary morphology. European Journal of Mechanics/A -Solids 26(2):242-269

    Article  MATH  MathSciNet  Google Scholar 

  36. Gogu G (2007) Structural synthesis of parallel robots, Part 1: Method-ology, Springer, Dordrecht (in press)

    Google Scholar 

  37. Gogu G (2008) Structural synthesis of parallel robots, Part 2: Topologies, Springer, Dordrecht, 2008 (in press)

    Google Scholar 

  38. Gosselin C, Kong X, Foucault S, Bonev I (2004) A fully-decoupled 3-dof translational parallel mechanism. In: Parallel Kinematic Machines in Research and Practice, 4th Chemnitz Parallel Kinematics Seminar, 595-610

    Google Scholar 

  39. Gosselin F, Martins JP, Bidard C, Andriot C, Brisset J (2005) Design of a new parallel haptic device for desktop applications. In: Proc First Joint Eurohaptics Conf and Symp on Haptic Interfaces for Virtual Env and Teleoperation Systems, pp 189-194

    Google Scholar 

  40. Grange S, Conti F, Helmer P, Rouiller R, Baur C (2001) Overview of the Delta Haptic Device, Eurohaptics, Birmingham

    Google Scholar 

  41. Hannaford B, Venema S (1995) Kinesthetic displays for remote and virtual environments. In: Barfield W, Furness T (eds) Virtual Environments and Advanced Interface Design, Oxford, pp 415-436

    Google Scholar 

  42. Hayward V, Choksi J, Lanvin G, Ramstein C (1994) Design and multiobjective optimization of a linkage for a haptic interface. In: Proc 4th Int Workshop on Advanced in Robot Kinematics, Ljubljana, pp 352-359

    Google Scholar 

  43. Hayward V, Astley OR, Cruz-Hernandez M, Grant D, Robles-De-La-Torre G (2004) Haptic interfaces and devices. Sensor Review 24(1):16-29.

    Article  Google Scholar 

  44. Hsu JK, Li T, Payandeh S (2005) On integration of a novel minimally invasive surgery robotic system. In: Proc 12th Int Conf on Advanced Robotics, Seattle, pp 437-444

    Google Scholar 

  45. Kelley AJ, Salcudean SE (1994) The development of a force-feedback mouse and its integration into a Graphical User Interface. In: Proc Int Mech Eng Cong & Expo, Chicago, vol. 55-1, pp 287-294

    Google Scholar 

  46. Khatib O, Conti F (2005) Spanning large workspaces using small haptic devices. In: IEEE World Haptics, Pisa

    Google Scholar 

  47. Kim HW, Lee JH, Suh IH, Yi BJ (2005) Comparative study and experimental verification of singular-free algorithms for a 6 DoF parallel haptic device. Mechatronics 15:403-422

    Article  Google Scholar 

  48. Kim S, Tsai LW 2002) Evaluation of a Cartesian parallel manipulator. In: Lenarčič J, Thomas F (eds) Advances in Robot Kinematics, Kluwer, pp 21-28

    Google Scholar 

  49. Kim TJ, Yi BJ, Suh IH (2004) Load distribution algorithms and ex-perimentation for a redundantly actuated, singularity-free 3-DoF parallel haptic device. In: Proc IEEE/RSJ Int Conf Intel Robots and Systems, Sendai, pp 2899-2904

    Google Scholar 

  50. Kinashi S, Sugisaki Y, Kanao H, Fujisawa M, Miura KT (2005) Development of a geometric modeling device with haptic rendering. Computer-Aided Design & Applications 2(1-4):283-290

    Google Scholar 

  51. Kong X, Gosselin C (2002) Type synthesis of linear translational parallel manipulators. In: Lenarčič J, Thomas F (eds) Advances in Robot Kinematics, Kluwer, pp 453-462

    Google Scholar 

  52. Kwon TB, Song JB (2006) Force display using a hybrid haptic device composed of motors and brakes. Mechatronics 16:249-257

    Article  Google Scholar 

  53. Lawrence DA, Chapel JD (1994) Performance trade-offs for hand controller design. In: Proc. IEEE. Int. Conf. Robotics Autom, San Diego, pp 3211-3216

    Google Scholar 

  54. Lee CD, Lawrence DA, Pao LY (2002) Dynamic modeling and parameter identification of a parallel haptic interface. In: Proc 10th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperation Systems, IEEE VirtualReality Conference, Orlando, pp 172-179

    Google Scholar 

  55. Lee SH, Kim WK, Oh SM, Yi BJ (2004) Kinematic analysis and implementation of a spherical 3-degree-of-freedom parallel mechanism. In: Proc IEEE/RSJ Int Conf Intelligent Robots and Systems, Sendai, 809-814

    Google Scholar 

  56. Lee SS, Lee JM (2003) Design of a general purpose 6-DoF haptic interface. Mechatronics 13:697-722

    Article  Google Scholar 

  57. Li WH, Liu B, Kosasih PB, Zhang XZ (2007) A 2-DoF MR actuator joystick for virtual reality applications. Sensors and Actuators A: Physical, in press

    Google Scholar 

  58. Massie TH, Salisbury JK (1994) The PHANToM haptic interface: a device for probing virtual objects. In: Int Mech Eng Cong & Expo, Chicago, vol 55-1, pp 295-301

    Google Scholar 

  59. Moreyra M, Hannaford B (1998) A practical measure of dynamic response of haptic devices. In: Proc IEEE Int Conf Robotics and Autom, Leuven, pp 369-374

    Google Scholar 

  60. Pao LY, Lawrence DA (1998) Synergistic visual/haptic computer interfaces. In: Proc Japan/USA/Vietnam Workshop on Research and Education in Systems, Computation, and Control Engineering, Hanoi, pp 155-162

    Google Scholar 

  61. Payandeh S, Li T (2003) Toward new designs of haptic devices for minimally invasive surgery. In: Int Congress Series, vol. 1256, pp 775-781

    Google Scholar 

  62. Sabater JM, Saltarén RJ, Aracil R (2004) Design, modelling and implementation of a 6 URS parallel haptic device. Robotics and Auton Systems 47:1-10

    Article  Google Scholar 

  63. Salcudean SE, Stocco L (2000) Isotropy and actuator optimization in haptic interface design. In: IEEE Int Conf Robotics Autom, San Francisco, pp 763-769

    Google Scholar 

  64. Salisbury K, Conti F, Barbagli F (2004) Haptic rendering: introductory concepts. IEEE Computer Graphics and Applications 24(2):24-32

    Article  Google Scholar 

  65. Salsbury JK, Craig JJ (1982) Articulated hands: force and kinematic issues. Int Journal of Robotics Research 1(1):1-17

    Google Scholar 

  66. Sakaguchi M, Furusho J (1999) Development of a 2 DoF force display system using ER actuators. In: IEEE/ASME Conf on Advanced Intelligent Mechatronics, Atlanta, pp 707-712

    Google Scholar 

  67. Spaelter U, Moix T, Ilic D, Bleuler H, Bajka M (2004) A 4-dof haptic device for hysteroscopy simulation. In: Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, Sendai, pp 3257-3263

    Google Scholar 

  68. Srinivasan MA, Basdogan C (1997) Haptics in virtual environments: taxonomy, research status, and challenges, Computers and Graphics 21(4):393-404

    Article  Google Scholar 

  69. Yang GH, Kyung KU, Jeong YJ, Kwon DS (2005) Novel haptic mouse system for holistic haptic display and potential of vibrotactile stimulation. In: Proc IEEE/RSJ Int Conf Intelligent Robots and Systems, Edmonton, pp 1109-1104

    Google Scholar 

  70. Yoon J, Ryu J (2001) Design, fabrication, and evaluation of a new haptic device using a parallel mechanism, IEEE/ASME Trans on Mechantronics 6 (2):221-233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Gogu, G. (2008). Fully-Isotropic Parallel Mechanisms - An Innovative Concept for Haptic Devices. In: Talaba, D., Amditis, A. (eds) Product Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8200-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8200-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8199-6

  • Online ISBN: 978-1-4020-8200-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics