Skip to main content

Synthesis: Hybrid Molecular Models for Coordination Compounds

  • Chapter
Hybrid Methods of Molecular Modeling

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 17))

  • 970 Accesses

Abstract

In the last chapter of this book, we employ the general methods developed in the previous chapters in the context of a specific class of molecular systems known as coordination compounds. The simplest statement about this class of systems is negative: it is poorly describable by transitional (classical) MM methods. The reasons are twofold and manifest themselves differently for different subclasses of coordination compounds. The first is the non-directional character of coordination bonds and their unsaturability. This feature is common to all types of coordination centers that manifest a wide variety of coordination numbers and coordination polyhedra. The second important source of problems relates to the coordination compounds of transition metal ions with open d-shells. In this case, the situation is that each of the multiple electronic states available for the open d-shell produces corresponding PES which all lie in a narrow energy interval and may intersect due to their sophisticated dependence on molecular geometry. This produces a picture in which a unique PES usually assumed in the classical MM models does not exist, but a bunch of them is present, all of which must be uniformly treated. As a result of these two sources of problems, the material of this chapter is divided into two parts. In the first we consider the factors responsible for the “unspecific” behavior – a group of electrons occupying three-dimensionally delocalized orbitals of the central atom (ion) of the complex and its close vicinity. This produces a mechanistic picture of PES of coordination compounds capable of reproducing the effects of ligand mutual influence. In the second we address the transition metal complexes with open d-shells. We apply the general hybrid methodology to develop a true QM/MM scheme of including sufficiently quantum subsystem (the d-shell) in the general classical (MM treated) environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.I. Tchernyaev. Reports of the Institute of Platinum of AN SSSR, 4, 243, 1926 [in Russian].

    Google Scholar 

  2. A.L. Tchougr éeff and A.M. Tokmachev. J. Comp. Meth. Sci. Eng. 2, 309, 2002.

    Google Scholar 

  3. A.L. Tchougr éeff. J. Mol. Struct. THEOCHEM, 630, 243, 2003.

    Article  Google Scholar 

  4. A.M. Tokmachev and A.L. Tchougr éeff. Int. J. Quant. Chem. 96, 175, 2004.

    Article  Google Scholar 

  5. U. Burkert and N.L. Allinger. Molecular Mechanics, ACS, Washington, 1982.

    Google Scholar 

  6. T.A. Halgren. J. Comp. Chem. 17, 490, 1996; ibid., 17, 520, 1996; ibid., 17, 553, 1996; T.A. Halgren and R.B. Nachbar. ibid., 17, 587, 1996; ibid., 17, 516, 1996.

    Google Scholar 

  7. N.L. Allinger, K. Chen and J.-H. Lii. J. Comp. Chem. 17, 642, 1996; N. Nevins, K. Chen and N.L. Allinger. ibid., 17, 669, 1996; N. Nevins, J.-H. Lii and N.L. Allinger. ibid., 17, 695, 1996; N. Nevins and N.L. Allinger. ibid., 17, 730, 1996; N.L. Allinger, K. Chen, J.A. Katzenellenbogen, S.R. Wilson and G.M. Anstead. ibid., 17, 747, 1996.

    Google Scholar 

  8. P. Comba and T. Hambley. Molecular Modeling of Inorganic Compounds. VCH, NY, 1995.

    Google Scholar 

  9. V. Burton, R. Deeth, C. Kemp and P. Gilbert. J. Am. Chem. Soc. 117, 8407, 1995; R. Deeth and V. Paget. J. Chem. Soc. Dalton Trans., 537, 1997.

    Google Scholar 

  10. I.V. Pletnev and V.L. Melnikov. Koord. Khim., 23, 205, 1997 [in Russian]; Russ. Chem. Bull. 7,1278,1997.

    Google Scholar 

  11. I.B. Bersuker. Electronic Structure and Properties of Coordination Compounds [in Russian] Khimiya, Moscow, 1976.

    Google Scholar 

  12. S. Shaik and A. Shurki. Angew. Chem. Int. Ed., 38, 586, 1999.

    Article  Google Scholar 

  13. A.L. Tchougr éeff. Deductive molecular mechanics as applied to develop QM/MM picture of dative and coordination bonds. J. Mol. Struct. (THEOCHEM), 632, 91, 2003.

    Article  Google Scholar 

  14. G. Tiraboschi, M.-C. Fourni é-Zaluski, B.-P. Roques and N. Gresh. J. Comp. Chem., 22(10), 1038, 2001; F. Rogalewicz, G. Ohanessian and N. Gresh, ibid., 21(11), 963, 2000.

    Google Scholar 

  15. A.M. Tokmachev and A.L. Tchougr éeff. Int. J. Quant. Chem., 85, 109, 2001.

    Article  CAS  Google Scholar 

  16. B.P. Hay, L. Yang, J.-H. Lii and N.L. Allinger. J. Mol. Struct. (THEOCHEM), 428, 203, 1998.

    Article  CAS  Google Scholar 

  17. M.T.M. Koper. Modern Aspects of Electrochemistry No 36 (ed. C.G. Vayenas, B.E. Conway and R.E. White) Kluwer, Academic, Plenum, New York, 2003.

    Google Scholar 

  18. A.M. Tokmachev and A.L. Tchougr éeff. Unpublished.

    Google Scholar 

  19. M. M öllhoff and U. Sternberg. J. Mol. Model., 7, 90, 2001.

    Google Scholar 

  20. L. Pauling. General Chemistry, W.H. Freeman, San Francisco, 1958.

    Google Scholar 

  21. J. Kozelka. In Metal Ions in Biological Systems, vol. 33 (eds. A. Sigel and H. Sigel) Marcel Dekker New York, 1996.

    Google Scholar 

  22. J. Golebiowski, V. Lamare, M.T.C. Martins-Costa, C. Millot and M.F. Ruiz-L ópez. Chem. Phys. 272,47,2001.

    Article  CAS  Google Scholar 

  23. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Russ. J. Phys. Chem., 68, (1994) 1135; ibid 68 (1994) 1142, A.V. Sinitsky, M.B. Darkhovskii, A.L. Tchougr éeff and I.A. Misurkin. Int. J. Quant. Chem., 88, 370, 2002.

    Google Scholar 

  24. M. Fuxreiter, O¨. Farkas and G. N áray-Szab ó . Protein Eng. 8, 925, 1995.

    Article  CAS  Google Scholar 

  25. R. Cini, D.G. Musaev, L.G. Marzilli and K. Morokuma. J. Mol. Struct. (THEOCHEM), 392, 55,1997.

    Google Scholar 

  26. O.L. Malta, H.J. Batista and L.D. Carlos. Chem. Phys., 282, 21, 2002.

    Article  CAS  Google Scholar 

  27. T.E. Peacock. Electronic Properties of Aromatic and Heterocyclic Molecules, Academic, London, 1965.

    Google Scholar 

  28. B. Hay. Coord. Chem. Rev., 126, 177, 1993.

    Article  CAS  Google Scholar 

  29. J.H. Van Vleck. J. Chem. Phys., 3(12), 803, 1935.

    Article  CAS  Google Scholar 

  30. J.H. Van Vleck. J. Chem. Phys., 3(12), 807, 1935.

    Article  CAS  Google Scholar 

  31. U. Sternberg, F.-T. Koch, M. Br äuer, M. Kunert and E. Anders. J. Mol. Model., 7, 54, 2001.

    CAS  Google Scholar 

  32. J. Owen. Proc. Roy. Soc. A., 227(1169), 183, 1955.

    Article  CAS  Google Scholar 

  33. A.L. Tchougr éeff and A.M. Tokmachev. Int. J. Quant. Chem., 106, 571, 2006.

    Article  Google Scholar 

  34. M.B. Darkhovskii, A.M. Tokmachev and A.L. Tchougr éeff. Int. J. Quant. Chem., 106, 2268, 2006.

    Article  CAS  Google Scholar 

  35. L. Di Sipio, E. Tondello, G. De Michelis and L. Oleari. Chem. Phys. Lett., 11, 287, 1971.

    Article  CAS  Google Scholar 

  36. R. McWeeny and B.T. Sutcliffe. Methods of Molecular Quantum Mechanics., Academic, London, 1969.

    Google Scholar 

  37. R. McWeeny. Methods of Molecular Quantum Mechanics. (2 ed.) Academic, London, 1992.

    Google Scholar 

  38. A.L. Tchougr éeff. DSc Thesis [in Russian] Karpov Institute Moscow, 2004.

    Google Scholar 

  39. A.M. Tokmachev and A.L. Tchougr éeff. Transferability of parameters of strictly local geminals’ wave function and possibility of sequential derivation of molecular mechanics, J. Comp. Chem., 26,491,2005.

    Article  CAS  Google Scholar 

  40. K. Ruedenberg. Rev. Mod. Phys., 34, 326, 1962.

    Article  CAS  Google Scholar 

  41. A.A. Levin and P.N. Dyachkov. Electronic Structure and Transformations of Heteroligand Molecules [in Russian] Nauka, Moscow, 1990; A.A. Levin and P.N. Dyachkov, Heteroligand Molecular Systems: Bonding, Shapes and Isomer Stabilities, Taylor and Francis, New York, London. 2002.

    Google Scholar 

  42. V.I. Pupyshev. Private communication.

    Google Scholar 

  43. A.L. Tchougréeff and A.M. Tokmachev. Int. J. Quant. Chem., 100, 667, 2004.

    Article  Google Scholar 

  44. V.I. Baranovskii and O.V. Sizova. Teor. i Eksp. Khim., 10, 678, 1974 [in Russian].

    CAS  Google Scholar 

  45. N.A. Popov. Koord. Khim., 1, 732, 1975 [in Russian].

    Google Scholar 

  46. N.A. Popov. Koord. Khim., 2, 1155, 1976 [in Russian].

    CAS  Google Scholar 

  47. I.B. Bersuker. Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry, Nauka, Moscow, 1987 [in Russian].

    Google Scholar 

  48. A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III and W.M. Skiff. J. Am. Chem. Soc., 114,10024,1992.

    Article  Google Scholar 

  49. A.K. Rappé, K.S. Colwell and C.J. Casewit. Inorg.Chem., 32, 3438, 1993.

    Article  Google Scholar 

  50. B.P. Hay. Coord. Chem. Rev., 126, 177, 1993.

    Article  CAS  Google Scholar 

  51. B.P. Hay. L. Yang, J.-H. Lii, N.L. Allinger. J. Mol. Struct. (THEOCHEM), 428, 203, 1998.

    Article  CAS  Google Scholar 

  52. P. Comba and R. Remenyi. Coord. Chem. Rev., 238-239, 9, 2003.

    Article  CAS  Google Scholar 

  53. H. Erras-Hanauer, T. Clark and R. Van Eldik. Coord. Chem. Rev., 238-239, 233, 2003.

    Article  CAS  Google Scholar 

  54. P. G ütlich. Struct. Bond., 44, 83, 1981.

    Article  Google Scholar 

  55. E. K önig, G. Ritter and S.K. Kulshreshtha. Chem. Rev., 85, 219, 1985.

    Article  Google Scholar 

  56. E. K önig. Struct. Bond., 76, 53, 1991.

    Google Scholar 

  57. P. G ütlich and H.A. Goodwin eds. Spin Crossover in Transition Metal Compounds, vols. 233-235 of Topics Curr. Chem., Springer, NY, 2004.

    Google Scholar 

  58. M.B. Darkhovskii and M.G. Razumov, I.V. Pletnev and A.L. Tchougréeff. Int. J. Quant. Chem., 88,588,2002.

    Article  Google Scholar 

  59. V.I. Pupyshev. Int. J. Quant. Chem., 104, 157, 2005.

    Article  CAS  Google Scholar 

  60. R.J. Deeth. Coord. Chem. Rev., 212(1), 11, 2001.

    Article  CAS  Google Scholar 

  61. H.M. Marques, O.Q. Munro, N.E. Grimmer, D.C. Levendis, F. Marsicano, G. Pattrick and T. Markoulides. J. Chem. Soc. Faraday Trans., 91(2), 1741, 1995.

    Article  CAS  Google Scholar 

  62. C. Daul, S. Niketić , C. Rauzy and C.-W. Schlöpfer. Chem. A. Eur. J., 10, 721, 2004.

    Article  CAS  Google Scholar 

  63. M.B. Darkhovskii and A.L. Tchougr éeff. Unpublished.

    Google Scholar 

  64. M.B. Darkhovskii and A.L. Tchougréeff. Khim. Fiz., 18(1), 73, 1999.

    CAS  Google Scholar 

  65. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Theor. Chim. Acta, 83, 389, 1992.

    Article  Google Scholar 

  66. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Zh. Fiz. Khim., 68(7), 1256, 1994.

    Google Scholar 

  67. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Zh. Fiz. Khim., 68(7), 1264, 1994.

    Google Scholar 

  68. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Int. J. Quant. Chem., 57, 663, 1996.

    Article  CAS  Google Scholar 

  69. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Int. J. Quant. Chem., 58, 161, 1996.

    Article  CAS  Google Scholar 

  70. P.G. Perkins and J.J.P. Stewart. J. Chem. Soc. Faraday Trans.(II), 78, 285, 1982.

    Article  CAS  Google Scholar 

  71. M.B. Darkhovskii and A.L. Tchougr éeff. Zh. Fiz. Khim. 74, 360, 2000; Russ. J. Phys. Chem., 74,296,2000.

    Google Scholar 

  72. M. Gerloch and R.G. Wooley. Prog. Inorg. Chem., 31, 371, 1983.

    Article  Google Scholar 

  73. A.A. Abrikosov, L.P. Gor’kov and I.Y. Dzyaloshinskii. Quantum Field Theoretical Methods in Statistical Physics, Pergamon, Oxford, 1965.

    Google Scholar 

  74. J.A. Pople and D.L. Beveridge. Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970.

    Google Scholar 

  75. A.V.M. de Andrade, N.B. da Costa Jr., A.M. Simas and G.F. de Sá . Chem. Phys. Lett., 227, 349, 1994.

    Article  CAS  Google Scholar 

  76. P. Ren and J.W. Ponder. J. Comput. Chem., 23, 1497, 2002.

    Article  CAS  Google Scholar 

  77. M.B. Darkhovskii and A.L. Tchougréeff. J. Phys. Chem. A., 108, 6351, 2004.

    Article  CAS  Google Scholar 

  78. M.B. Darkhovskii, I.V. Pletnev and A.L. Tchougréeff. J. Comp. Chem., 24, 1703, 2003.

    Article  CAS  Google Scholar 

  79. S. Niketic and K. Rasmussen. The Consistent Force Field: A Documentation, vol. 3 of Lecture Notes in Chemistry, Springer, NY, 1977.

    Google Scholar 

  80. J.-P. Malrieu. In The Concept of the Chemical Bond. Theoretical Models of Chemical Bonding, Part 2, ed. by Z.B. Maksić , Springer, Heidelberg, 1989.

    Google Scholar 

  81. P. Fulde. Electron Correlations in Molecules and Solids, (3 ed.) Springer, Berlin, 1995.

    Google Scholar 

  82. G.J.M. Janssen and W.C. Nieuwpoort. Int. J. Quant. Chem., 22, 679, 1988.

    Article  CAS  Google Scholar 

  83. L. Seijo and Z. Barandiaran. The ab initio model potential method: A common strategy for effective core potential and embedded cluster calculations. In J. Leszczynski, (ed), Computational chemistry: Reviews of Current Trends, 4, pp. 55-152, World Scientific, Singapore, 1999.

    Google Scholar 

  84. C.E. Schäffer and C. Anthon. Coord. Chem. Rev., 226, 17, 2002.

    Article  Google Scholar 

  85. M. Atanasov, C.A. Daul and C. Rauzy. Chem. Phys. Lett., 367, 737, 2003.

    Article  CAS  Google Scholar 

  86. M.C. Zerner. Intermediate neglect of differential overlap calculations on the electronic spectra of transition metal complexes. In N. Russo, D.R. Salahub. (ed), Metal-Ligand Interactions: Structure and Reactivity, Kluwer, Dordrecht, 1996, pp. 493-531, NATO ASI Workshop.

    Google Scholar 

  87. C.J. Margulis, V. Guallar, E. Sim, R.A. Friesner and B.J. Berne. J. Phys. Chem. B., 106, 8038, 2002.

    Article  CAS  Google Scholar 

  88. J.-P. Piquemal, B. Williams-Hubbard, N. Fey, R.J. Deeth, N. Gresh and C. Giessner-Prettre. J. Mol. Struct. (THEOCHEM), 632, 91, 2003.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2008). Synthesis: Hybrid Molecular Models for Coordination Compounds. In: Hybrid Methods of Molecular Modeling. Progress in Theoretical Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8189-7_4

Download citation

Publish with us

Policies and ethics