Skip to main content

Deductive Molecular Mechanics: Bridging Quantum and Classical Models of Molecular Structure

  • Chapter
Hybrid Methods of Molecular Modeling

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 17))

  • 959 Accesses

Abstract

In the previous chapter we used the general scheme of electron variable separation to analyze current hybrid methods and suggest improvements to them. The situation in which we find ourselves is that the variable separation technique proposed in Chapter 1 can and should be used to sequentially construct hybrid methods by applying the GF form of the trial wave function for the complex molecular system. The prerequisite, for such an enterprise is that the orbitals of the system can be divided into complementary orthogonal carrier subspaces for the quantally and classically treated subsystems of the complex system. This prerequisite is, however, not taken for granted unless for some reason the required subspaces can be defined on symmetry grounds (as in the case of π-systems in the Hückel and other similar methods), and that is what we shall provide in this chapter. The way it is done here may seem too indirect. It is, however, necessary to follow this route. The key relation to be established is that between the geometry of the classically treated part of the complex system and the orbitals spanning the carrier space for its quantally treated part. Clearly the orbitals located on the frontier atoms are most sensitive to the geometry variations occurring in the classically treated subsystem right next to the frontier. However, to get this dependence we need a general theory relating forms of the orbitals to the geometries of the molecules. The required theory has to be constructed in terms of local quantities, i.e. hybrid orbitals rather than molecular orbitals, which is what we provide in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Burkert and N.L. Allinger. Molecular Mechanics, ACS, Washington, 1982.

    Google Scholar 

  2. V.G. Dashevskii. Conformations of Organic Molecule [in Russian] Khimiya, Moscow, 1974.

    Google Scholar 

  3. A.Y. Meyer. Theoretical Models of Chemical Bonding, Part 1 ed. by Z.B. Maksi ć , Springer, Heidelberg, 1989.

    Google Scholar 

  4. V.A. Fock. Symmetry of a hydrogen atom, SORENA, 5, 3, 1935.

    Google Scholar 

  5. H. Weyl. The Theory of Groups and Quantum Mechanics, 1931, rept. 1950 Dover, NY.

    Google Scholar 

  6. H. Weyl. Classical Groups: Their Invariants and Representations, Princeton University Press, Princeton, 1939.

    Google Scholar 

  7. E. Wigner. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959.

    Google Scholar 

  8. J.P. Elliot and P.G. Dawber. Symmetry in Physics, vols. 1, 2, Macmillan, London, 1979.

    Google Scholar 

  9. A.M. Tokmachev and A.L. Tchougr éeff. Russ. J. Phys. Chem., 73, 259, 1999.

    Google Scholar 

  10. A.M. Tokmachev, A.L. Tchougr éeff and I.A. Misurkin. Russ. J. Phys. Chem., 74, S205, 2000.

    Google Scholar 

  11. A.M. Tokmachev and A.L. Tchougr éeff. J. Comp. Chem., 22, 752, 2001.

    Article  CAS  Google Scholar 

  12. A.M. Tokmachev and A.L. Tchougr éeff. J. Phys. Chem. A., 107, 358, 2003.

    Article  CAS  Google Scholar 

  13. J.H. van t’Hoff. Archives neerlandaises des sciences exactes et naturelles. 9, 445, 1874.

    Google Scholar 

  14. J.A. LeBel. Bull. Soc. Chim., 22, 337, 1874.

    Google Scholar 

  15. R. Hoffmann. J. Chem. Phys., 39, 1397, 1963.

    Article  CAS  Google Scholar 

  16. C.A. Coulson. Valence, Oxford University Press, Oxford, 1961.

    Google Scholar 

  17. R.J. Gillespie and R.S. Nyholm. Quart. Rev. Chem. Soc., 11, 339, 1957.

    Article  CAS  Google Scholar 

  18. R.J. Gillespie. Angew. Chem. Int. Ed. Engl., 6, 819, 1967; J. Chem. Educ., 47, 19, 1967; Molecular Geometry, Van Nostrand Reinhold, London, 1972.

    Google Scholar 

  19. R.J. Gillespie and I. Hargittai. The VSEPR Model of Molecular Geometry, Prentice Hall, New Jersey, 1991.

    Google Scholar 

  20. J.-P. Daudey, J.-P. Malrieu and O. Rojas. Localization and Delocalization in Quantum Chem- istry, Vol. 1. Atoms and Molecules in the Ground State, O. Chalvet, R. Daudel, S. Diner and J.-P. Malrieu. eds., Reidel, Dordrecht, 1975.

    Google Scholar 

  21. A.L. Tchougréeff. Chem. Phys. Reports, 16, 1035, 1997.

    Google Scholar 

  22. P. Surján. Top. Curr. Chem., 203, 64, 1999.

    Google Scholar 

  23. G. N áray-Szab ó and P.R. Surján. Chem. Phys. Lett., 96, 499, 1983.

    Article  Google Scholar 

  24. J.M. Parks and R.G. Parr. J. Chem. Phys., 28, 335, 1958.

    Article  CAS  Google Scholar 

  25. A.A. Abrikosov, L.P. Gor’kov and I.Y. Dzyaloshinskii. Quantum Field Theoretical Methods in Statistical Physics, Pergamon, Oxford, 1965.

    Google Scholar 

  26. A.M. Tokmachev and A.L. Tchougréeff. J. Comp. Chem., 26, 491, 2005.

    Article  CAS  Google Scholar 

  27. S.L. Altmann. Rotations, Quaternions and Double Groups, Oxford Scientific Publications, Clarendon, Oxford University Press, New York, 1986; A.V. Berezin, Y.A. Kurochkin and E.A. Tolkachev. Quaternions in Relativistic Physics [in Russian] Nauka i Tehnika, Minsk, 1989.

    Google Scholar 

  28. E. Cartan. Leçons sur la théorie des spineurs. Hermann, Paris, 1938.

    Google Scholar 

  29. R.D. Richtmyer. Principles of Advanced Mathematical Physics, vols. 1, 2, Springer, New York, 1981.

    Google Scholar 

  30. J.M. Kennedy and C.E. Schäffer. Inorg. Chem. Acta, 252, 185, 1996.

    Article  CAS  Google Scholar 

  31. E.U. Condon and G.H. Shortley. Theory of Atomic Spectra, Cambridge University Press, New York, 1951.

    Google Scholar 

  32. I.R. Shafarevich. Fundamental Concepts of Algebra [in Russian] R&C Dynamics, Izhevsk, 2001.

    Google Scholar 

  33. J. Kozelka. In Metal Ions in Biological Systems, vol. 33 (eds. A. Sigel and H. Sigel) Marcel Dekker, New York, 1996.

    Google Scholar 

  34. L. Pauling. General Chemistry, W.H. Freeman, San Francisco, 1958.

    Google Scholar 

  35. G. Del Re. Theor. Chim. Acta, 1, 188, 1963.

    Article  CAS  Google Scholar 

  36. M.J.S. Dewar and W. Thiel. J. Am. Chem. Soc., 99, 4899, 1977; M.J.S. Dewar and W. Thiel, ibid., 99, 4907, 1977.

    Google Scholar 

  37. J.F. Mulligan. J. Chem. Phys., 19, 347, 1951.

    Article  CAS  Google Scholar 

  38. R.G. Parr and G.R. Taylor. J. Chem. Phys., 19, 497, 1951.

    Article  CAS  Google Scholar 

  39. J. Applequist. J. Math. Phys., 24, 739, 1983.

    Article  Google Scholar 

  40. J. Applequist. J. Chem. Phys., 83, 809, 1985.

    Article  CAS  Google Scholar 

  41. C.E. Dykstra. Chem. Rev., 93, 2339, 1993.

    Article  CAS  Google Scholar 

  42. L.D. Landau and E.M. Lifshits. Mechanics. Course of Theoretical Physics, vol. 1, Pergamon, London, 1976.

    Google Scholar 

  43. A.D. Buckingham. In Intermolecular Interactions: From Diatomics to Biopolymers, ed. by B. Pullman, Wiley Interscience, NY, 1978.

    Google Scholar 

  44. A.M. Tokmachev and A.L. Tchougréeff. Int. J. Quant. Chem., 88, 403, 2002.

    Article  CAS  Google Scholar 

  45. A.M. Tokmachev and A.L. Tchougréeff. J. Comp. Meth. Sci. Eng., 2, 309, 2002.

    Google Scholar 

  46. R. Car and M. Parinello. Phys. Rev. Lett., 55, 2741, 1985.

    Article  Google Scholar 

  47. R.C. Bingham, M.J.S. Dewar and D.H. Lo. J. Am. Chem. Soc., 97, 1302, 1307, 1975.

    Article  CAS  Google Scholar 

  48. I. Mayer. Struct. Chem., 8, 309, 1997.

    Article  CAS  Google Scholar 

  49. H.A. Bent. Chem. Rev., 61, 275, 1961.

    Article  CAS  Google Scholar 

  50. G. Frenking and N. Frölich. Chem. Rev., 100, 717, 2000.

    Article  CAS  Google Scholar 

  51. A.L. Tchougréeff. J. Mol. Struct. (THEOCHEM), 630, 243, 2003.

    Article  Google Scholar 

  52. A.L. Tchougréeff and A.M. Tokmachev. Int. J. Quant. Chem., 96, 175, 2004.

    Article  Google Scholar 

  53. A.I. Kostrikin and Y.I. Manin. Linear Algebra and Geometry [in Russian] Nauka, Moscow, 1986.

    Google Scholar 

  54. R.G. Pearson. Symmetry Rules for Chemical Reactions, Wiley, New York, 1976.

    Google Scholar 

  55. M.V. Volkenstein, L.A. Gribov, M.A. Elyashevich and B.I. Stepanov. Molecular Virbations [in Russian] Nauka, Moscow, 1972.

    Google Scholar 

  56. O. Ermer and S. Lifson. J. Am. Chem. Soc., 95, 4121, 1973; M.J. Hwang, J.P. Stocktisch and A.T. Hagler. J. Am. Chem. Soc., 116, 2515, 1994.

    Google Scholar 

  57. S. Chang, D. McNally, S. Shary-Tehrany, M.J. Hickey and R.H. Boyd. J. Am. Chem. Soc., 92, 3109,1970.

    Article  CAS  Google Scholar 

  58. F. Bernardi, M. Olivucci and M.A. Robb. J. Amer. Chem. Soc., 114, 1606, 1992.

    Article  CAS  Google Scholar 

  59. C.A. Coulson. Rev. Mod. Phys., 32, 170, 1963.

    Article  Google Scholar 

  60. I. Fisher-Hjalmars. In Modern Quantum Chemistry. Istanbul Lectures, vol. 1, ed. by O. Sinano Ǧlu, AP, New York, 1965.

    Google Scholar 

  61. N.F. Stepanov, G.S. Koptev, V.I. Pupyshev and Y.N. Panchenko. In Modern Problems of Physical Chemistry, vol. 11 [in Russian] MSU Publ., Moscow, 1979.

    Google Scholar 

  62. T.L. Allen and H. Shull. J. Chem. Phys., 35, 1644, 1961.

    Article  CAS  Google Scholar 

  63. A.L. Tchougréeff. J. Mol. Struct. (THEOCHEM), 630, 243, 2003.

    Article  Google Scholar 

  64. A.L. Tchougréeff. J. Mol. Struct. (THEOCHEM), 632, 91, 2003.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2008). Deductive Molecular Mechanics: Bridging Quantum and Classical Models of Molecular Structure. In: Hybrid Methods of Molecular Modeling. Progress in Theoretical Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8189-7_3

Download citation

Publish with us

Policies and ethics