Relativistic Multireference Perturbation Theory: Complete Active-Space Second-Order Perturbation Theory (CASPT2) With The Four-Component Dirac Hamiltonian

  • Minori Abe
  • Geetha Gopakmar
  • Takahito Nakajima
  • Kimihiko Hirao
Part of the Challenges and Advances In Computational Chemistry and Physics book series (COCH, volume 5)


The relativistic complete active-space second-order perturbation theory (CASPT2) developed for the four-component relativistic Hamiltonian is introduced in this chapter. This method can describe the near-degenerated and dissociated electronic states of molecules involving heavy elements. This method is applicable for the systems which can be described by neither DFT nor single reference methods, and the system with very heavy-elements which cannot be described by quasi-relativistic approaches. The present theory provides accurate descriptions of bonding or dissociation states and of ground and excited states in a well-balanced way. In this review, for example, the ground and low-lying excited states of diatomic molecules with 6p series, TlH, Tl2, PbH, and Pb2 are calculated with the Dirac–Coulomb (DC) CASPT2 method and their spectroscopic constants and potential energy curves are presented. The obtained spectroscopic constants are compared with experimental findings and previous theoretical works. For all the molecules, the spectroscopic constants of DC-CASPT2 show reasonably good agreement with the experimental or previous theoretical spectroscopic constants


Relativity Four-Component Electron Correlation Multireference Perturbation Theory CASPT2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    REL4D: Abe M, Iikura H, Kamiya M, Nakajima T, Yanagisawa S, Yanai T.Google Scholar
  2. 2.
    Yanai T, Kamiya M, Kawashima Y, Nakajima T, Nakano H, Nakao Y, Sekino H, Paulovic J, Tsuneda T, Yanagisawa S, Hirao K (2004) The UTChem program package is available on Scholar
  3. 3.
    Visscher L, Visser O, Aerts H, Merenga H, and Nieuwpoort WC (1994) Comput Phys Commun 81: 120.CrossRefGoogle Scholar
  4. 4.
    Saue T, Fægri K, Jr, Helgaker T, and Gropen O (1997) Mol Phys 91: 937.CrossRefGoogle Scholar
  5. 5.
    Yanai T, Nakajima T, Ishikawa Y, and Hirao K (2001) J Chem Phys 114: 6526.CrossRefGoogle Scholar
  6. 6.
    Abe M, Yanai T, Nakajima T, and Hirao K (2004) Chem Phys Lett 388: 68.CrossRefGoogle Scholar
  7. 7.
    Visscher L, Eliav E, and Kaldor U (2001) J Chem Phys 115: 9720.CrossRefGoogle Scholar
  8. 8.
    Fleig T, Jensen HJA, Olsen J, and Visscher L (2006) J Chem Phys 124: 104106.CrossRefGoogle Scholar
  9. 9.
    Miyajima M, Watanabe Y, and Nakano H (2006) J Chem Phys 124: 044101.CrossRefGoogle Scholar
  10. 10.
    Abe M, Nakajima T, and Hirao K (2006) J Chem Phys 125: 234110.CrossRefGoogle Scholar
  11. 11.
    Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, and Woliñski K (1990) J Phys Chem 94: 5483.CrossRefGoogle Scholar
  12. 12.
    Andersson K, Malmqvist PÅ, and Roos BO (1992) J Chem Phys 96: 1218.CrossRefGoogle Scholar
  13. 13.
    Seth M, Schwerdtfeger P, and Fægri K (1999) J Chem Phys 111: 6422.CrossRefGoogle Scholar
  14. 14.
    Fægri K and Visscher L (2005) Theor Chem Acc 105:265.CrossRefGoogle Scholar
  15. 15.
    Rakowitz F and Marian CM (1997) Chem Phys 225: 223.CrossRefGoogle Scholar
  16. 16.
    Hess BA and Maran CM (2000) In: Jensen P and Bunker PR (ed) Computational Molecular Spectroscopy, Wiley, Sussex, p. 169.Google Scholar
  17. 17.
    Kim MC, Lee HS, Lee YS, and Lee SY (1998) J Chem Phys 109: 9384.CrossRefGoogle Scholar
  18. 18.
    Han YK and Hirao K (2000) J Chem Phys 112: 9353.CrossRefGoogle Scholar
  19. 19.
    Roos BO and Malmqvist PÅ (2004) Phys Chem Chem Phys 6: 2919.CrossRefGoogle Scholar
  20. 20.
    Christiansen PA (1983) J Chem Phys 79: 2928.CrossRefGoogle Scholar
  21. 21.
    Christiansen PA and Pitzer KS (1981) J Chem Phys 74: 1162.CrossRefGoogle Scholar
  22. 22.
    Vijayakumar M and Balasubramanian K (1992) J Chem Phys 97: 7474.CrossRefGoogle Scholar
  23. 23.
    Isaev TA, Mosyagin NS, Titov AV, Alekseyev AB, and Buenker RJ (2002) Int J Quantum Chem 88: 687.CrossRefGoogle Scholar
  24. 24.
    Mayer M, Kruger S, and Rosch N (2001) J Chem Phys 115:4411.CrossRefGoogle Scholar
  25. 25.
    Huzinaga S and Arnau C (1970) Phys Rev A 1: 1285.CrossRefGoogle Scholar
  26. 26.
    Potts DM, Taylor CM, Chaudhuri RK, and Freed KF (2001) J Chem Phys 114: 2592.CrossRefGoogle Scholar
  27. 27.
    Tsuchiya T, Abe M, Nakajima T, and Hirao K (2001) J Chem Phys 115: 4463.CrossRefGoogle Scholar
  28. 28.
    Nakajima T and Hirao K (2000) J Chem Phys 113: 7786.CrossRefGoogle Scholar
  29. 29.
    Koc K and Ishikawa Y (1994) Phys Rev A 49: 794.CrossRefGoogle Scholar
  30. 30.
    Faegri K (2001) Theo Chem Acc 105: 252.Google Scholar
  31. 31.
    Huber KP and Hertzberg G (1979) In: Molecular Spectra and Molecular Structure. IV. Constants of diatomic molecules, van Nostrand Reinhold, New York.Google Scholar
  32. 32.
    Ginter ML and Battino R (1965) J Chem Phys 42: 3222.CrossRefGoogle Scholar
  33. 33.
    Froben FW, Schulze W, and Kloss U (1983) Chem Phys Lett 99:500.CrossRefGoogle Scholar
  34. 34.
    Hertzberg (1950) In: Molecular spectra and Molecular structure. I. Spectra of Diatomic Molecules, Van Nostrand Reinhold, New York.Google Scholar
  35. 35.
    Wood D and Andrew KL (1968) J Opt Soc Am 58: 818.CrossRefGoogle Scholar
  36. 36.
    Frohen F, Schulze W, and Kloss U (1983) Chem Phys Letters 99: 500.CrossRefGoogle Scholar
  37. 37.
    Sonntag H and Weber R (1983) J Mol Spectrosc 100: 75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Minori Abe
    • 1
  • Geetha Gopakmar
    • 2
  • Takahito Nakajima
    • 2
  • Kimihiko Hirao
    • 2
  1. 1.Department of Chemistry Graduate School of ScienceTokyo Metropolitan University1-1 Minami-OsawaJapan 192-0397
  2. 2.Department of Applied Chemistry, School of EngineeringThe University of TokyoTokyoJapan 113-8656

Personalised recommendations