Skip to main content

Relativistic Multireference Perturbation Theory: Complete Active-Space Second-Order Perturbation Theory (CASPT2) With The Four-Component Dirac Hamiltonian

  • Chapter
Book cover Radiation Induced Molecular Phenomena in Nucleic Acids

Part of the book series: Challenges and Advances In Computational Chemistry and Physics ((COCH,volume 5))

Abstract

The relativistic complete active-space second-order perturbation theory (CASPT2) developed for the four-component relativistic Hamiltonian is introduced in this chapter. This method can describe the near-degenerated and dissociated electronic states of molecules involving heavy elements. This method is applicable for the systems which can be described by neither DFT nor single reference methods, and the system with very heavy-elements which cannot be described by quasi-relativistic approaches. The present theory provides accurate descriptions of bonding or dissociation states and of ground and excited states in a well-balanced way. In this review, for example, the ground and low-lying excited states of diatomic molecules with 6p series, TlH, Tl2, PbH, and Pb2 are calculated with the Dirac–Coulomb (DC) CASPT2 method and their spectroscopic constants and potential energy curves are presented. The obtained spectroscopic constants are compared with experimental findings and previous theoretical works. For all the molecules, the spectroscopic constants of DC-CASPT2 show reasonably good agreement with the experimental or previous theoretical spectroscopic constants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. REL4D: Abe M, Iikura H, Kamiya M, Nakajima T, Yanagisawa S, Yanai T.

    Google Scholar 

  2. Yanai T, Kamiya M, Kawashima Y, Nakajima T, Nakano H, Nakao Y, Sekino H, Paulovic J, Tsuneda T, Yanagisawa S, Hirao K (2004) The UTChem program package is available on http://utchem.qcl.t.u-tokyo.ac.jp/

    Google Scholar 

  3. Visscher L, Visser O, Aerts H, Merenga H, and Nieuwpoort WC (1994) Comput Phys Commun 81: 120.

    Article  CAS  Google Scholar 

  4. Saue T, Fægri K, Jr, Helgaker T, and Gropen O (1997) Mol Phys 91: 937.

    Article  CAS  Google Scholar 

  5. Yanai T, Nakajima T, Ishikawa Y, and Hirao K (2001) J Chem Phys 114: 6526.

    Article  CAS  Google Scholar 

  6. Abe M, Yanai T, Nakajima T, and Hirao K (2004) Chem Phys Lett 388: 68.

    Article  CAS  Google Scholar 

  7. Visscher L, Eliav E, and Kaldor U (2001) J Chem Phys 115: 9720.

    Article  CAS  Google Scholar 

  8. Fleig T, Jensen HJA, Olsen J, and Visscher L (2006) J Chem Phys 124: 104106.

    Article  CAS  Google Scholar 

  9. Miyajima M, Watanabe Y, and Nakano H (2006) J Chem Phys 124: 044101.

    Article  CAS  Google Scholar 

  10. Abe M, Nakajima T, and Hirao K (2006) J Chem Phys 125: 234110.

    Article  CAS  Google Scholar 

  11. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, and Woliñski K (1990) J Phys Chem 94: 5483.

    Article  CAS  Google Scholar 

  12. Andersson K, Malmqvist PÃ…, and Roos BO (1992) J Chem Phys 96: 1218.

    Article  CAS  Google Scholar 

  13. Seth M, Schwerdtfeger P, and Fægri K (1999) J Chem Phys 111: 6422.

    Article  CAS  Google Scholar 

  14. Fægri K and Visscher L (2005) Theor Chem Acc 105:265.

    Article  Google Scholar 

  15. Rakowitz F and Marian CM (1997) Chem Phys 225: 223.

    Article  CAS  Google Scholar 

  16. Hess BA and Maran CM (2000) In: Jensen P and Bunker PR (ed) Computational Molecular Spectroscopy, Wiley, Sussex, p. 169.

    Google Scholar 

  17. Kim MC, Lee HS, Lee YS, and Lee SY (1998) J Chem Phys 109: 9384.

    Article  CAS  Google Scholar 

  18. Han YK and Hirao K (2000) J Chem Phys 112: 9353.

    Article  CAS  Google Scholar 

  19. Roos BO and Malmqvist PÃ… (2004) Phys Chem Chem Phys 6: 2919.

    Article  CAS  Google Scholar 

  20. Christiansen PA (1983) J Chem Phys 79: 2928.

    Article  CAS  Google Scholar 

  21. Christiansen PA and Pitzer KS (1981) J Chem Phys 74: 1162.

    Article  CAS  Google Scholar 

  22. Vijayakumar M and Balasubramanian K (1992) J Chem Phys 97: 7474.

    Article  CAS  Google Scholar 

  23. Isaev TA, Mosyagin NS, Titov AV, Alekseyev AB, and Buenker RJ (2002) Int J Quantum Chem 88: 687.

    Article  CAS  Google Scholar 

  24. Mayer M, Kruger S, and Rosch N (2001) J Chem Phys 115:4411.

    Article  CAS  Google Scholar 

  25. Huzinaga S and Arnau C (1970) Phys Rev A 1: 1285.

    Article  Google Scholar 

  26. Potts DM, Taylor CM, Chaudhuri RK, and Freed KF (2001) J Chem Phys 114: 2592.

    Article  CAS  Google Scholar 

  27. Tsuchiya T, Abe M, Nakajima T, and Hirao K (2001) J Chem Phys 115: 4463.

    Article  CAS  Google Scholar 

  28. Nakajima T and Hirao K (2000) J Chem Phys 113: 7786.

    Article  CAS  Google Scholar 

  29. Koc K and Ishikawa Y (1994) Phys Rev A 49: 794.

    Article  CAS  Google Scholar 

  30. Faegri K (2001) Theo Chem Acc 105: 252.

    CAS  Google Scholar 

  31. Huber KP and Hertzberg G (1979) In: Molecular Spectra and Molecular Structure. IV. Constants of diatomic molecules, van Nostrand Reinhold, New York.

    Google Scholar 

  32. Ginter ML and Battino R (1965) J Chem Phys 42: 3222.

    Article  CAS  Google Scholar 

  33. Froben FW, Schulze W, and Kloss U (1983) Chem Phys Lett 99:500.

    Article  Google Scholar 

  34. Hertzberg (1950) In: Molecular spectra and Molecular structure. I. Spectra of Diatomic Molecules, Van Nostrand Reinhold, New York.

    Google Scholar 

  35. Wood D and Andrew KL (1968) J Opt Soc Am 58: 818.

    Article  CAS  Google Scholar 

  36. Frohen F, Schulze W, and Kloss U (1983) Chem Phys Letters 99: 500.

    Article  Google Scholar 

  37. Sonntag H and Weber R (1983) J Mol Spectrosc 100: 75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abe, M., Gopakmar, G., Nakajima, T., Hirao, K. (2008). Relativistic Multireference Perturbation Theory: Complete Active-Space Second-Order Perturbation Theory (CASPT2) With The Four-Component Dirac Hamiltonian. In: Shukla, M.K., Leszczynski, J. (eds) Radiation Induced Molecular Phenomena in Nucleic Acids. Challenges and Advances In Computational Chemistry and Physics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8184-2_6

Download citation

Publish with us

Policies and ethics