Skip to main content

Stable Valence Anions of Nucleic Acid Bases and DNA Strand Breaks Induced by Low Energy Electrons

  • Chapter
Radiation Induced Molecular Phenomena in Nucleic Acids

abstract

The last decade has witnessed immense advances in our understanding of the effects of ionizing radiation on biological systems. As the genetic information carrier in biological systems, DNA is the most important species which is prone to damage by high energy photons. Ionizing radiations destroy DNA indirectly by forming low energy electrons (LEEs) as secondary products of the interaction between ionizing radiation and water. An understanding of the mechanism that leads to the formation of single and double strand breaks may be important in guiding the further development of anticancer radiation therapy. In this article we demonstrate the likely involvement of stable nucleobases anions in the formation of DNA strand breaks – a concept which the radiation research community has not focused on so far. In Section refch21:sec21.1 we discuss the current status of studies related to the interaction between DNA and LEEs. The next section is devoted to the description of proton transfer induced by electron attachment to the complexes between nucleobases and various proton donors – a process leading to the strong stabilization of nucleobases anions. Then, we review our results concerning the anionic binary complexes of nucleobases with particular emphasize on the GC and AT systems. Next, the possible consequences of interactions between DNA and proteins in the context of electron attachment are briefly discussed. Further, we focus on existing proposal of single strand break formation in DNA. Ultimately, open questions as well perspectives of studies on electron induced DNA damage are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanche L (2002). Nanoscopic aspects of radiobiological damage: fragmentation induced by secondary low-energy electrons. Mass Spectrom Rev 21: 349–369.

    Article  CAS  Google Scholar 

  2. Sanche L (2005). Low energy electron-driven damage in biomolecules. Eur Phys J D 35: 367–390.

    Article  CAS  Google Scholar 

  3. Nikjoo H, Charlton DE, Goodhead DT (1994). Monte Carlo track structure studies of energy deposition and calculation of initial DSB and RBE. Ad Space Res 14: 161–180.

    Article  CAS  Google Scholar 

  4. Prise KM, Folkard M, Michael BD, Vojnovic B, Brocklehurst B, Hopkirk A, Munro IH (2000). Critical energies for SSB and DSB induction in plasmid DNA by low-energy photons: Action spectra for strand-break induction in plasmid DNA irradiated in vacuum. Int J Radiat Biol 76: 881–890.

    Article  CAS  Google Scholar 

  5. von Sonntag C (1987). The chemical basis for radiation biology. London: Taylor and Francis.

    Google Scholar 

  6. Zheng Y, Cloutier P, Hunting DJ, Sanche L, Wagner JR (2005). Chemical basis of DNA sugar-phosphate cleavage by low-energy electrons. J Am Chem Soc 127: 16592–16598.

    Article  CAS  Google Scholar 

  7. Jay A, LaVerne JA, Simon M, Pimblott SA (1995). Electron energy loss distributions in solid and gaseous hydrocarbons. J Phys Chem 99: 10540–10548.

    Article  Google Scholar 

  8. Pimblott SM, LaVerne JA (2007). Production of low-energy electrons by ionizing radiation. Rad Phys Chem 76: 1244–1247.

    Article  CAS  Google Scholar 

  9. Pogozelski WK, Tullius TD (1998). Oxidative strand scission of nucleic acids: Routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev 98: 1089–1107.

    Article  CAS  Google Scholar 

  10. Burrows CJ, Muller JG (1998). Oxidative nucleobase modifications leading to strand scission. Chem Rev 98: 1109–1152.

    Article  CAS  Google Scholar 

  11. Folkard MK, Prise M, Vojnovic B, Davies S, Roper MJ, Michael BD (1993). Measurement of DNA damage by electrons with energies between 25 and 4000 eV. Int J Radiat Biol 64: 651–658.

    Article  CAS  Google Scholar 

  12. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000). Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287: 1658–1660.

    Article  CAS  Google Scholar 

  13. Boudaiffa B, Hunting DJ, Cloutier P, Huels MA, Sanche L (2000). Induction of single- and double-strand breaks in plasmid DNA by 100–1500 eV electrons. Int J Radiat Biol 76: 1209–1221.

    Article  CAS  Google Scholar 

  14. Huels MA, Boudaiffa B, Cloutier P, Hunting D, Sanche L (2003). Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. J Am Chem Soc 125: 4467–4477.

    Article  CAS  Google Scholar 

  15. Zheng Y, Cloutier P, Hunting DJ, Wagner JR, Sanche L (2006). Phosphodiester and N-glycosidic bond cleavage in DNA induced by 4–15 eV electrons. J Chem Phys 124: 064710–064719.

    Google Scholar 

  16. Hotop H, Ruf MW, Allan M, Fabrikant II (2003). Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters. At Mol Opt Phys 49: 85.

    Google Scholar 

  17. Pan X, Cloutier P, Hunting D, Sanche L (2003). Dissociative electron attachment to DNA. Phys Rev Lett 90: 208102–1–4.

    Article  CAS  Google Scholar 

  18. Martin F, Burrow PD, Cai Z, Cloutier P, Hunting DJ, Sanche L (2004). DNA strand breaks induced by 0–4 eV electrons: The role of shape resonances. Phys Rev Lett 93: 068101–1–4.

    Article  Google Scholar 

  19. Abdoul-Carime H, Cloutier P, Sanche L (2001). Low-energy (5–40 eV) electron-stimulated desorption of anions from physisorbed DNA bases. Radiat Res 155: 625–633.

    Article  CAS  Google Scholar 

  20. Pan X, Abdoul-Carime H, Cloutier P, Bass AD, Sanche L (2005). D-, O- and OD- desorption induced by low-energy (0–20 eV) electron impact on amorphous D2O films. Radiat Phys Chem 72: 193–199.

    Article  CAS  Google Scholar 

  21. Antic D, Parenteau L, Lepage M, Sanche L (1999). Low-energy electron damage to condensed-phase deoxyribose analogues investigated by electron stimulated desorption of H$- $and electron energy loss spectroscopy. J Phys Chem B 103: 6611–6619.

    Article  CAS  Google Scholar 

  22. Panajotovic R, Martin F, Cloutier P, Hunting D, Sanche L (2006). Effective cross sections for production of single- strand breaks in plasmid DNA by 0.1 to 4.7 eV electrons. Radiat Res 165: 452–459.

    Article  CAS  Google Scholar 

  23. Aflatooni K, Gallup GA, Burrow PD (1998). Electron attachment energies of the DNA bases. J Phys Chem A 102: 6205–6207.

    Article  CAS  Google Scholar 

  24. Allan M (1989). Study of triplet states and short-lived negative ions by means of electron impact spectroscopy. J Electron Spectrosc Relat Phenom 48: 219–351.

    Article  CAS  Google Scholar 

  25. Grandi A, Gianturco FA, Sanna N (2004). H$-$ Desorption from uracil via metastable electron capture. Phys Rev Lett 93: 048103–1–4.

    Article  CAS  Google Scholar 

  26. Zheng Y, Wagner JR, Sanche L (2006). DNA damage induced by low-energy electrons: Electron transfer and diffraction. Phys Rev Lett 96: 208101–1–4.

    Google Scholar 

  27. Ptasinska S, Sanche L (2007). Dissociative electron attachment to abasic DNA. Phys Chem Chem Phys 9: 1730–1735.

    Article  CAS  Google Scholar 

  28. Cai Z, Cloutier P, Hunting D, Sanche L (2005). Comparison between X-ray photon and secondary electron damage to DNA in vacuum. J Phys Chem B 109: 4796–4800.

    Article  CAS  Google Scholar 

  29. Simons J (2006). How do low-energy (0.1–2 eV) electrons cause DNA-strand breaks? Acc Chem Res 39: 772–779.

    Article  CAS  Google Scholar 

  30. Voityuk AA (2006). In: Sponer J, Lankas F., (eds.), Leszczynski, J. (ser. ed.), Computational modeling OD charge transfer in DNA in Chalenges and Advances in Computational Chemistry and Physics, vol 2: Computational Studies of RNA and DNA. Springer, The Netherlands, pp. 485–512.

    Google Scholar 

  31. Voityuk AA, Siriwong K, Roesch N (2001). Charge transfer in DNA. Sensitivity of electronic couplings to conformational changes. Phys Chem Chem Phys 3: 5421–5425.

    Article  CAS  Google Scholar 

  32. Sadowska-Aleksiejew A, Rak J, Voityuk AA (2006). Effect of intra base-pairs on hole transfer coupling in DNA. Chem Phys Lett 429: 546–550.

    Article  CAS  Google Scholar 

  33. Svozil D, Jungwith P, Havlas Z (2004). Electron binding to nucleic acid bases. Experimental and theoretical studies. A review., Collect Czech Chem Commun 69: 1395–1428.

    Article  CAS  Google Scholar 

  34. Hendricks JH, Lyapustina SA, de Clercq HL, Bowen KH (1998). The dipole bound-to-covalent anion transformation in uracyl. J Chem Phys 108: 8–11.

    Article  CAS  Google Scholar 

  35. Yan M, David Becker D, Summerfield S, Renke P, Sevilla MD (1996). Relative abundance and reactivity of primary ion radicals in $UPgamma$-irradiated DNA at low temperatures. 2. Single- vs Double-Stranded DNA. J Phys Chem 96: 1983–1989.

    Article  Google Scholar 

  36. Dabkowska I, Rak J, Gutowski M (2005). DNA strand breaks induced by concerted interaction of H radicals and low-energy electrons: A computational study on the nucleotide of cytosine. Eur Phys J D 35: 429–435.

    Article  CAS  Google Scholar 

  37. Lu Q-B, Bass AD, Sanche L (2002). Superinelastic electron transfer: Electron trapping in H$2$O ice via the N$2 -$ ($2UPPi_g)$ resonance. Phys Rev Lett 88: 17601–1–4.

    Article  Google Scholar 

  38. Li X, Grubisic A, Stokes ST, Cordes J, Ganteför GF, Bowen KH, Kiran B, Willis M, Jena P, Burgert R, Schnöckel H (2007). Unexpected stability of Al$4$H$6$: A borane analog? Science 315: 356–358.

    Article  CAS  Google Scholar 

  39. Lindner J, Grotemeyer J, Schlag EW (1990). Applications of multiphoton ionization mass spectrometry: Small protected nucleosides and nucleotides. Int J Mass Spectrom Ion Proc 100: 267–285.

    Article  CAS  Google Scholar 

  40. Meijer G, de Vries MS, Hunziker HE, Wendt HR (1990). Laser desorption jet-cooling spectroscopy of para-amino benzoic acid monomer, dimer, and clusters. J Chem Phys 92: 7625–7635.

    Article  CAS  Google Scholar 

  41. Boesl U, Bassmann C, Kaesmeier R (2001). Time of flight mass analyzer for anion mass spectrometry and anion photoelectron spectroscopy. Int J Mass Spect 206: 231–244.

    Article  CAS  Google Scholar 

  42. Gutowski M, Dabkowska I, Rak J, Xu S, Nilles JM, Radisic D, Bowen Jr. KH (2002). Barrier-free intermolecular proton transfer in the uracil-glycine complex induced by excess electron attachment. Eur Phys J D 20: 431–439.

    Article  CAS  Google Scholar 

  43. Haranczyk M, Bachorz R, Rak J, Gutowski M, Radisic D, Stokes ST, Nilles JM, Bowen KH (2003). Excess electron attachment induces barrier-free proton transfer in binary complexes of uracil with H$2$Se and H$2$S but not with H$2$O. J Phys Chem B 107: 7889–7895.

    Article  CAS  Google Scholar 

  44. Haranczyk M, Rak J, Gutowski M, Radisic D, Stokes ST, Nilles JM, Bowen KH (2004). Effect of hydrogen bonding on barrier-free proton transfer in anionic complexes of uracil with weak acids: (UldotsHCN)$-$ versus (UldotsH$2$S)$-$. Isr J Chem 44: 157–170.

    Article  CAS  Google Scholar 

  45. Haranczyk M, Dabkowska I, Rak J, Gutowski M, Nilles JM, Stokes ST, Radisic D, Bowen KH (2004). Excess electron attachment induces barrier-free proton transfer in anionic complexes of thymine and Uracil with Formic Acid. J Phys Chem B 108: 6919–6921.

    Article  CAS  Google Scholar 

  46. Dabkowska I, Rak J, Gutowski M, Nilles JM, Radisic D, Bowen Jr KH (2004). Barrier-free intermolecular proton transfer induced by excess electron attachment to the complex of alanine with uracil. J Chem Phys 120: 6064–6071.

    Article  CAS  Google Scholar 

  47. Dabkowska I, Rak J, Gutowski M, Radisic D, Stokes ST, Nilles JM, Bowen Jr KH (2004). Barrier-free proton transfer in anionic complex of thymine with glycine. Phys Chem Chem Phys 6: 4351–4357.

    Article  CAS  Google Scholar 

  48. Haranczyk M, Rak J, Gutowski M, Radisic D, Stokes ST, Bowen KH (2005). Intermolecular proton transfer in anionic complexes of uracil with alcohols. J Phys Chem B 109: 13383–13391.

    Article  CAS  Google Scholar 

  49. Radisic D, Bowen KH, Dabkowska I, Storoniak P, Rak J, Gutowski M (2005). AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions. J Am Chem Soc 127: 6443–6450.

    Article  CAS  Google Scholar 

  50. Mazurkiewicz K, Haranczyk M, Gutowski M, Rak J, Radisic D, Eustis SN, Wang D, Bowen KH (2007). Valence anions in complexes of adenine and 9-methyladenine with formic acid: Stabilization by intermolecular proton transfer. J Am Chem Soc 129: 1216–1224.

    Article  CAS  Google Scholar 

  51. Bachorz RA, Haranczyk M, Dabkowska I, Rak J, Gutowski M (2005). Anion of the formic acid dimer as a model for intermolecular proton transfer induced by a π* excess electron. J Chem Phys 122: 204304–1–7.

    Article  Google Scholar 

  52. Taylor PR (1994). In: Roos BO (ed.), Lecture notes in quantum chemistry II, Springer, Berlin.

    Google Scholar 

  53. Kendall RA, Dunning Jr TH, Harrison RJ (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96: 6796–6806.

    Article  CAS  Google Scholar 

  54. Allan M (2007). Electron collisions with formic acid monomer and dimer. Phys Rev Lett 98: 123201–1–4.

    Article  Google Scholar 

  55. Aflatooni K, Hitt B, Gallup GA, Burrow PD (2001). Temporary anion states of selected amino acids. J Chem Phys 115: 6489–6494.

    Article  CAS  Google Scholar 

  56. Gutowski M, Skurski P, Simons J (2000). Dipole-bound anions of glycine based on the zwitterion and neutral structures. J Am Chem Soc 122: 10159–10162.

    Article  CAS  Google Scholar 

  57. Bachorz RA, Rak J, Gutowski M (2005). Stabilization of very rare tautomers of uracil by an excess electron. Phys Chem Chem Phys 7: 2116–2125.

    Article  CAS  Google Scholar 

  58. Dolgounitcheva O, Zakrzewski VG, Ortiz JV (1999). Anionic and neutral complexes of uracil and water. J Phys Chem A 103: 7912–7917.

    Article  CAS  Google Scholar 

  59. Hendricks JH, Lyapustina SA, de Clercq HL, Bowen KH (1998). The dipole bound-to-covalent anion transformation in uracil. J Chem Phys 108: 8–11.

    Article  CAS  Google Scholar 

  60. Dabkowska I, Gutowski M, Rak J (2002). On the stability of uracil-glycine hydrogen-bonded complexes: A computational study. Pol J Chem 76: 1243–1247.

    CAS  Google Scholar 

  61. Dabkowska I, Rak J, Gutowski M (2002). Computational study of hydrogen-bonded complexes between the most stable tautomers of glycine and uracil. J Phys Chem A 106: 7423–7433.

    Article  CAS  Google Scholar 

  62. Becke AD (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38: 3098–3100.

    Article  CAS  Google Scholar 

  63. Becke AD (1993). Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652.

    Article  CAS  Google Scholar 

  64. Lee C, Yang W, Paar RG (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37: 785–789.

    Article  CAS  Google Scholar 

  65. Ditchfield R, Hehre WJ, Pople JA (1971). Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54: 724–728.

    Article  CAS  Google Scholar 

  66. Hehre WJ, Ditchfield R, Pople JA (1972). Self-consistent molecular orbital Methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56: 2257–2261.

    Article  CAS  Google Scholar 

  67. Mazurkiewicz K, Haranczyk M, Gutowski M, Rak J, Radisic D, Eustis SN, Wang D, Bowen KH (2007). Valence anions in complexes of adenine and 9-methyladenine with formic acid: Stabilization by intermolecular proton transfer. J Am Chem Soc 129: 1216–1224.

    Article  CAS  Google Scholar 

  68. Haranczyk M, Gutowski M, Li X, Bowen KH (2007). Bound anionic states of adenine. Theoretical and photoelectron spectroscopy study. Proc. Natl Acad Sci USA 104: 4804–4807.

    Article  CAS  Google Scholar 

  69. Haranczyk M, Gutowski M (2005). Valence and dipole-bound anions of the most stable tautomers of guanine. J Am Chem Soc 127: 699–706.

    Article  CAS  Google Scholar 

  70. Haranczyk M, Gutowski M (2005). Finding adiabatically bound anions of guanine through a combinatorial computational approach. Angew Chem Int Ed 44: 6585–6587.

    Article  CAS  Google Scholar 

  71. Periquet V, Moreau A, Carles S, Schermann J, Desfrancois CJ (2000). Cluster size effects upon anion solvation of N-heterocyclic molecules and nucleic acid bases. J Electron Spectrosc Relat Phenom 106: 141–151.

    Article  CAS  Google Scholar 

  72. Jalbout A, Adamowicz L (2001). Dipole-bound anions of adenine-water clusters. Ab initio study. J Phys Chem A 105: 1033–1038.

    Article  CAS  Google Scholar 

  73. Jalbout A, Adamowicz L (2002). Cluster size effects upon stability of adenine–methanolanions. Theoretical study. J Mol Struct 605: 93–10.

    Article  CAS  Google Scholar 

  74. Bally T, Sastry GN (1997). Incorrect dissociation behavior of radical ions in density functional calculations. J Phys Chem A 101: 7923–7925.

    Article  CAS  Google Scholar 

  75. Storoniak P, Kobyłecka M, Dabkowska I, Rak J, Gutowski M (2007). Comparison of intermolecular proton transfer in the Watson-Crick anionic guanine-cytosine and 8-oxoguanine-cytosine pairs. To be submitted.

    Google Scholar 

  76. Li X, Cai Z, Sevilla MD (2001). Investigation of proton transfer within DNA base pair anion and cation radicals by density functional theory (DFT). J Phys Chem B 105: 10115–10123.

    Article  CAS  Google Scholar 

  77. Becker D, Sevilla MD (1993). In: Advances in radiation biology, the chemical consequences of radiation damage to DNA. Academic Press, New York.

    Google Scholar 

  78. Gu J, Wang J, Rak J, Leszczynski L (2007). Findings on the electron-attachment-induced abasic site in a DNA double helix. Angew Chem Int Ed 46: 3479–3481.

    Article  CAS  Google Scholar 

  79. Bao X, Wang J, Gu J, Leszczynski J (2006). DNA strand breaks induced by near-zero-electronvolt electron attachment to pyrimidine nucleotides. Proc Nat Acad Sci USA 103: 5658–5663.

    Article  CAS  Google Scholar 

  80. Gu J, Wang J, Leszczynski L (2006). Electron attachment-induced DNA single strand breaks: C_3-O_3 sigma-bond breaking of pyrimidine nucleotides predominates. J Am Chem Soc 128: 9322–9323.

    Article  CAS  Google Scholar 

  81. Wesolowski SS, Leininger ML, Pentchev PN, Schaefer HG III (2001). Electron affinities of the DNA and RNA bases. J Am Chem Soc 123: 4023–4028.

    Article  CAS  Google Scholar 

  82. Schiedt J, Weinkauf R, Neumark DN, Schlag E (1998). Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters. Chem Phys 239: 511–524.

    Article  CAS  Google Scholar 

  83. Kawai K, Saito I (1998). Stabilization of Hoogsteen base pairing by introduction of NH2 group at the C8 position of adenine. Tetrahedron Lett 29: 5221–5224.

    Article  Google Scholar 

  84. Hoffman MM, Kharpov MA, Cox JC, Yao J, Tong J, Ellington AD (2004). AANT: The Amino Acid–Nucleotide Interaction Database. Nucleic Acid Res 32: D174–D181.

    Google Scholar 

  85. Mazurkiewicz K, Rak J (2007). Purine nucleobases as possible electron traps in DNA-protein complexes. To be submitted.

    Google Scholar 

  86. Mazurkiewicz K (2007). Electron attachment and intra- as well as intermolecular proton transfer in the nucleobases related systems – relevance for DNA damage by low energy electrons. Ph.D. thesis. University of Gdansk, Gdansk, Poland.

    Google Scholar 

  87. Alan C, Cheng AC, William W, Chen WW, Cynthia N, Fuhrmann CN, Alan D, Frankel AD (2003). Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. J Mol Biol 327: 781–796.

    Article  Google Scholar 

  88. Mazurkiewicz K, Haranczyk M, Gutowski M, Rak J (2007). Can an excess electron localize on a purine moiety in the adenine-thymine Watson-Crick base pair? A computational study. Int J Quantum Chem DOI: 10.1002/qua.21359.

    Google Scholar 

  89. Cheng AC, Chen WW, Fuhrmann CN, Frankel AD (2003). Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. J Mol Biol 327: 781–796.

    Article  CAS  Google Scholar 

  90. Haranczyk M, Mazurkiewicz K, Gutowski M, Rak J, Radisic D, Eustis S, Wang D, Bowen KH (November 3rd–4th 2006). Purine moiety as an excess electron trap in the Watson-Crick AT pair solvated with formic acid. A Computational and Photoelectron Spectroscopy Study, 15th Conference on Current Trends in Computational Chemistry, Jackson, Mississippi, USA.

    Google Scholar 

  91. Li X, Sevilla MD, Sanche L (2003). Density functional theory studies of electron interaction with DNA: Can zero eV electrons induce strand breaks? J Am Chem Soc 125: 13668–13669.

    Article  CAS  Google Scholar 

  92. Berdys J, Skurski P, Simons J (2004). Damage to model DNA fragments by 0.25–1.0 eV electrons attached to a thymine π* orbital. J Phys Chem B 108: 5800–5805.

    Article  CAS  Google Scholar 

  93. Berdys J, Anusiewicz I, Skurski P, Simons J (2004). Theoretical study of damage to DNA by 0.2–1.5 eV electrons attached to cytosine. J Phys Chem A 108: 2999–3005.

    Article  CAS  Google Scholar 

  94. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002). Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations. Chem Rev 102: 231–282.

    Article  CAS  Google Scholar 

  95. Gu J, Xie Y, Schaefer HF (2006). Near 0 eV electrons attach to nucleotides. J Am Chem Soc 128: 1250–1252.

    Article  CAS  Google Scholar 

  96. Gu J, Xie Y, Schaefer HF (2005). Glycosidic bond cleavage of pyrimidine nucleosides by low energy electrons: A theoretical rationale. J Am Chem Soc 127: 1053–1057.

    Article  CAS  Google Scholar 

  97. Tomasi J, Perisco M (1994). Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem Rev 94: 2027–2094.

    Article  CAS  Google Scholar 

  98. Kumar A, Sevilla MD (2007). Low-energy electron attachment to 5$^′$-Thymidine monophosphate: Modeling single strand breaks through dissociative electron attachment. J Phys Chem B 111: 5464–5474.

    Article  CAS  Google Scholar 

  99. Colson AO, Sevilla MD (1995). Elucidation of primary radiation damage in DNA through application of ab initio molecular orbital theory. Int J Radiat Biol 67: 627–645.

    Article  CAS  Google Scholar 

  100. Li X, Cai Z, Sevilla MD (2002). Energetics of the radical ions of the AT and AU base pairs: A density functional theory (DFT) study. J Phys Chem A 106: 9345–9351.

    Article  CAS  Google Scholar 

  101. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000). Adiabatic connection for kinetics. J Phys Chem A 104: 4811–4815.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rak, J. et al. (2008). Stable Valence Anions of Nucleic Acid Bases and DNA Strand Breaks Induced by Low Energy Electrons. In: Shukla, M.K., Leszczynski, J. (eds) Radiation Induced Molecular Phenomena in Nucleic Acids. Challenges and Advances In Computational Chemistry and Physics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8184-2_21

Download citation

Publish with us

Policies and ethics