Skip to main content

Systemins and AtPeps: Defense-Related Peptide Signals

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    Article  PubMed  CAS  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  PubMed  CAS  Google Scholar 

  • Constabel CP, Yip L, Ryan CA (1998) Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Mol Biol 36:55–62

    Article  PubMed  CAS  Google Scholar 

  • D’Hont K, Bosch D, Van Damme J, Goethals M, Vanderkerkhove J, Krebbers E (1993) An aspartic endoproteinase present in seed cleaves Arabidopsis 2S albumins in vitro. J Biol Chem 268:20884–20891

    Google Scholar 

  • Dombrowski JE, Pearce G, Ryan CA (1999) Proteinase inhibitor-inducing activity of the prohormone prosystemin resides exclusively in the C-terminal systemin domain. Proc Natl Acad Sci USA 96:12947–12952

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Boller T (1995) Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J 7:381–389

    Article  CAS  Google Scholar 

  • Francois I, De Bolle MFC, Dwyer G, Goderis I, Woutors PFJ, Verhaert PD, Proost P, Schaaper WMM, Cammue BPA, Broekaert WF (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128:1346–1358

    Article  PubMed  CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves – possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Harris R (1989) Processing of pro-hormone precursor proteins. Arch Biochem Biophys 275:315–333

    Article  PubMed  CAS  Google Scholar 

  • Horn M, Patankar AG, Zavala JA, Wu JQ, Doleckova-Maresova L, Vujtechova M, Mares M, Baldwin IT (2005) Differential elicitation of two processing proteases controls theprocessing pattern of the trypsin proteinase inhibitor precursor in Nicotiana attenuata. Plant Physiol 139:375–388

    Article  PubMed  CAS  Google Scholar 

  • Howard AD, Kostura MJ, Thornberry N, Ding GJF, Limjuco G, Weidner J, Salley JP, Hogquist KA, Chaplin DD, Mumford RA, Schmidt JA, Tocci MJ (1991) IL-1β-Converting enzyme requires aspartic-acid residues for processing of the IL-1β precursor at 2 distinct sites and does not cleave 31-kDa IL-1α. J Immunol 147:2964–2969

    PubMed  CAS  Google Scholar 

  • Howe GA (2005) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    Google Scholar 

  • Howe GA, Ryan CA (1999) Suppressors of systemin signaling identify genes in the tomato wound response pathway. Genetics 153:1411–1421

    PubMed  CAS  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006a) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:10098–10103

    Article  CAS  Google Scholar 

  • Huffaker A, Yamagushi Y, Pearce G, Ryan CA (2006b) AtPep1 peptides. In: Kastin AJ (ed) Handbook of biologically active peptides. Academic Press, San Diego, pp 5–8

    Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Ann Rev Plant Biol 57:649–674

    Article  CAS  Google Scholar 

  • McGurl B, Orozco-Cárdenas M, Pearce G, Ryan CA (1994) Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase-inhibitor synthesis. Proc Natl Acad Sci USA 91:9799–9802

    Article  PubMed  CAS  Google Scholar 

  • McGurl B, Ryan CA (1992) The organization of the prosystemin gene. Plant Mol Biol 20:405–409

    Article  PubMed  CAS  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cárdenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Meindl T, Boller T, Felix G (1998) The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10:1561–1570

    Article  PubMed  CAS  Google Scholar 

  • Montoya T, Nomura T, Farrar K, Kaneta T, Yokota T, Bishop GJ (2002) Cloning the tomato curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14:3163–3176

    Article  PubMed  CAS  Google Scholar 

  • Narváez-Vásquez J, Orozco-Cárdenas ML, Ryan CA (1994) A sulfhydryl reagent modulates systemic signaling for wound-induced and systemin-induced proteinase-inhibitor synthesis. Plant Physiol 105:725–730

    PubMed  Google Scholar 

  • Narváez-Vásquez J, Orozco-Cárdenas ML, Ryan CA (2007) Systemic wound signaling in tomato leaves is cooperatively regulated by multiple plant peptides. Plant Mol Biol65:711–718

    Article  PubMed  Google Scholar 

  • Narváez-Vásquez J, Pearce G, Orozco-Cárdenas ML, Franceschi VR, Ryan CA (1995) Autoradiographic and biochemical-evidence for the systemic translocation of systemin in tomato plants. Planta 195:593–600

    Article  Google Scholar 

  • Narváez-Vásquez J, Pearce G, Ryan CA (2005) The plant cell wall matrix harbors a precursor of defense signaling peptides. Proc Natl Acad Sci USA 102:12974–12977

    Article  PubMed  Google Scholar 

  • Narváez-Vásquez J, Ryan CA (2002) The systemin precursor gene regulates both defensive and developmental genes in Solanum tuberosum. Proc Natl Acad Sci USA 99:15818–15821

    Article  PubMed  Google Scholar 

  • Narváez-Vásquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360–369

    Article  PubMed  Google Scholar 

  • Nickel W (2003) The mystery of nonclassical protein secretion – A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cárdenas ML, McGurl B, Ryan CA (1993) Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc Natl Acad Sci USA 90:8273–8276

    Article  PubMed  Google Scholar 

  • Pautot V, Holzer FM, Reish B, Walling LL (1993) Leucine aminopeptidase: an inducible component of the defense response in Lycopersicon esculentum (tomato). Proc Natl Acad Sci USA 90:9906–9910

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Johnson S, Ryan CA (1993) Structure-activity of deleted and substituted systemin, an 18-amino acid polypeptide inducer of plant defensive genes. J Biol Chem 268:212–216

    PubMed  CAS  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Narváez-Vásquez J, Ryan CA (2006) Systemins. In: Kastin AJ (ed) Handbook of biologically active peptides. Academic Press, San Diego, pp 49–53

    Google Scholar 

  • Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores – isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278:30044–30050

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves activates the expression of proteinase inhibitor genes. Science 253:895–898

    Article  PubMed  CAS  Google Scholar 

  • Rath A, Davison AR, Deber CM (2005) The structure of ‘unstructured’ regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Biopolymers 80:179–185

    Article  PubMed  CAS  Google Scholar 

  • Realini C, Rogers SW, Rechsteiner M (1994) KEKE motifs – proposed roles in protein–protein association and presentation of peptides by MHC Class-I receptors. FEBS Lett 348:109–113

    Article  PubMed  CAS  Google Scholar 

  • Ren F, Lu Y-T (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor A in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Sci 171:286–292

    Article  CAS  Google Scholar 

  • Rocha-Granados MC, Sánchez-Hernández C, Sánchez-Hernández C, Martínez-Gallardo NA, Ochoa-Alejo N, Délano-Frier JP (2005) The expression of the hydroxyproline-rich glycopeptide systemin precursor A in response to (a)biotic stress and elicitors is indicative of its role in the regulation of the wound response in tobacco (Nicotiana tabacum L.). Planta 222:794–810

    Article  CAS  Google Scholar 

  • Rojo E, Martin R, Carter C, Zouhar J, Pan SQ, Plotnikova J, Jin HL, Paneque M, Sanchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV (2004) VPE gamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14:1897–1906

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    PubMed  CAS  Google Scholar 

  • Ryan CA, Moura DS (2002) Systemic wound signalling in plants: a new perception. Proc Natl Acad Sci USA 99:6519–6520

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA, Pearce G (1998) Systemin: a polypeptide signal for plant defensive genes. Ann Rev Cell Dev Biol 14:1–17

    Article  CAS  Google Scholar 

  • Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci USA 100:14577–14580

    Article  PubMed  CAS  Google Scholar 

  • Schaller A (1998) Action of proteolysis-resistant systemin analogues in wound signalling. Phytochemistry 47:605–612

    Article  PubMed  CAS  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11:263–272

    Article  PubMed  CAS  Google Scholar 

  • Schaller A, Ryan CA (1994) Identification of a 50-KDa systemin-binding protein in tomato plasma-membranes having Kex2p-like properties. Proc Natl Acad Sci USA 91:11802–11806

    Article  PubMed  CAS  Google Scholar 

  • Schaller A, Ryan CA (1996) Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Plant Mol Biol 31:1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Schaller F, Schaller A, Stintzi A (2005) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179–199

    Google Scholar 

  • Scheer JM, Pearce G, Ryan CA (2003) Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene. Proc Natl Acad Sci USA 100:10114–10117

    Article  PubMed  CAS  Google Scholar 

  • Scheer JM, Ryan CA (1999) A 160-kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell 11:1525–1535

    Article  PubMed  CAS  Google Scholar 

  • Scheer JM, Ryan CA (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci USA 99:9585–9590

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Chretien M (1997) Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol 8:602–607

    Article  PubMed  CAS  Google Scholar 

  • Stenzel I, Hause B, Maucher H, Pitzschke A, Mierch O, Ziegler J, Ryan CA, Wasternack C (2003) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato – amplification in wound signaling. Plant J 33:577–589

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S (2003) Comparative aspects of intracellular proteolytic processing of peptide hormone precursors: studies of proopiomelanocortin processing. Zool Sci 20:1183–1198

    Article  PubMed  CAS  Google Scholar 

  • Tortiglione C, Fogliano V, Ferracane R, Fanti P, Pennacchio F, Monti LM, Rao R (2003) An insect peptide engineered into the tomato prosystemin gene is released in transgenic tobacco plants and exerts biological activity. Plant Mol Biol 53:891–902

    Article  PubMed  CAS  Google Scholar 

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080

    Article  PubMed  CAS  Google Scholar 

  • Walling LL (2006) Recycling or regulation? The role of amino-terminal modifying enzymes. Curr Opin Plant Biol 9:227–233

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato – role of jasmonic acid. J Plant Physiol 163:297–306

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci USA 103:10104–10109

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junction, triadin, calsequestrin, and the ryanodine receptor – proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–2339

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Narváez-Vásquez, J., Orozco-Cárdenas, M.L. (2008). Systemins and AtPeps: Defense-Related Peptide Signals. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_15

Download citation

Publish with us

Policies and ethics