Skip to main content

Action of Plant Defensive Enzymes in the Insect Midgut

  • Chapter
Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alabadi D, Aguero MS, Perez-Amador MA, Carbonell J (1996) Arginase, arginine decarboxylase, ornithine decarboxylase, and polyamines in tomato ovaries. Changes in unpollinated ovaries and parthenocarpic fruits induced by auxin or gibberellin. Plant Physiol 112:1237–1244

    PubMed  CAS  Google Scholar 

  • Andrews DL, Beames B, Summers MD, Park WD (1988) Characterization of the lipid acyl hydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J 252:199–206

    PubMed  CAS  Google Scholar 

  • Benedetti CE, Xie D, Turner JG (1995) COI1-dependent expression of an Arabidopsis vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate. Plant Physiol 109:567–572

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum MR (1995) Turnabout is fair play – Secondary roles for primary compounds. J Chem Ecol 21:925–940

    Article  CAS  Google Scholar 

  • Berger S, Bell E, Sadka A, Mullet JE (1995) Arabidopsis thaliana AtVsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid-phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Mol Biol 27:933–942

    Article  PubMed  CAS  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & Hall, New York

    Google Scholar 

  • Broadway RM, Duffey SS (1986) Plant proteinase inhibitors – Mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exiqua. J Insect Physiol 32:827–833

    Article  CAS  Google Scholar 

  • Broadway RM, Duffey SS (1988) The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitors. J Insect Physiol 34:1111–1117

    Article  CAS  Google Scholar 

  • Casey TM (1976) Activity patterns, body temperature and thermal ecology in two desert caterpillars (Lepidoptera: Sphingidae). Ecology 57:485–497

    Article  Google Scholar 

  • Chang CL (2004) Effect of amino acids on larvae and adults of Ceratitis capitata (Diptera: Tephritidae). Ann Entomol Soc Am 97:529–535

    Article  CAS  Google Scholar 

  • Chao WS, Gu YQ, Pautot VV, Bray EA, Walling LL (1999) Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol 120:979–992

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Gonzales-Vigil E, Wilkerson CG, Howe GA (2007) Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol 143:1954–1967

    Article  PubMed  CAS  Google Scholar 

  • Chen H, McCaig BC, Melotto M, He SY, Howe GA (2004) Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. J Biol Chem 279:45998–46007

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005). Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242

    Article  PubMed  CAS  Google Scholar 

  • Colau D, Negrutiu I, Vanmontagu M, Hernalsteens JP (1987) Complementation of a threonine dehydratase-deficient Nicotiana plumbaginifolia mutant after Agrobacterium-tumefaciens-mediated transfer of the Saccharomyces cerevisiae ILV1 gene. Mol Cell Biol 7:2552–2557

    PubMed  CAS  Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407–411

    Article  PubMed  CAS  Google Scholar 

  • Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37

    Article  CAS  Google Scholar 

  • Feeny P (1976) Plant apparency in chemical defense. Recent Adv Phytochem 10:1–40

    CAS  Google Scholar 

  • Felton GW (1996) Nutritive quality of plant protein: sources of variation and insect herbivore responses. Arch Insect Biochem Physiol 32:107–130

    Article  CAS  Google Scholar 

  • Felton GW (2005) Indigestion is a plant’s best defense. Proc Natl Acad Sci USA 102:18771–18772

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel GS (1959) The raison d’etre of secondary plant substances; these odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129:1466–1470

    Article  PubMed  CAS  Google Scholar 

  • Franceschi VR, Grimes HD (1991) Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc Natl Acad Sci USA 88:6745–6749

    Article  PubMed  CAS  Google Scholar 

  • Gallagher DT, Gilliland GL, Xiao GY, Zondlo J, Fisher KE, Chinchilla D, Eisenstein E (1998) Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Structure 6:465–475

    Article  PubMed  CAS  Google Scholar 

  • Gfeller A, Farmer EE (2004) Keeping the leaves green above us. Science 306:1515–1516

    Article  PubMed  CAS  Google Scholar 

  • Goldraij A, Polacco JC (1999) Arginase is inoperative in developing soybean embryos. Plant Physiol 119:297–304

    Article  PubMed  CAS  Google Scholar 

  • Goldraij A, Polacco JC (2000) Arginine degradation by arginase in mitochondria of soybean seedling cotyledons. Planta 210:652–658

    Article  PubMed  CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves – possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Halgand F, Wessel PM, Laprevote O, Dumas R (2002) Biochemical and mass spectrometric evidence for quaternary structure modifications of plant threonine deaminase induced by isoleucine. Biochemistry 41:13767–13773

    Article  PubMed  CAS  Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol 125:683–700

    Article  PubMed  CAS  Google Scholar 

  • Hildmann T, Ebneth M, Pena-Cortes H, Sanchez-Serrano JJ, Willmitzer L, Prat S (1992) General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4:1157–1170

    Article  PubMed  CAS  Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    CAS  Google Scholar 

  • John SJ, Srivastava V, Guhamukherjee S (1995) Cloning and sequencing of chickpea cDNA coding for threonine deaminase. Plant Physiol 107:1023–1024

    Article  PubMed  CAS  Google Scholar 

  • Kang JH, Baldwin IT (2006). Isolation and characterization of the threonine deaminase promoter in Nicotiana attenuata. Plant Sci 171:435–440

    Article  CAS  Google Scholar 

  • Kang JH, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  PubMed  CAS  Google Scholar 

  • Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378

    Article  PubMed  CAS  Google Scholar 

  • Leelapon O, Sarath G, Staswick PE (2004) A single amino acid substitution in soybean VSP alpha increases its acid phosphatase activity nearly 20-fold. Planta 219:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Ahn JE, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K (2005) Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol 139:1545–1556

    Article  PubMed  CAS  Google Scholar 

  • Major IT, Constabel CP (2006) Molecular analysis of poplar defense against herbivory: comparison of wound- and insect elicitor-induced gene expression. New Phytol 172:617–635

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, Mullet JE (1990) Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2:569–579

    Article  PubMed  CAS  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen-content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Meuriot F, Noquet C, Avice JC, Volenec JJ, Cunningham SM, Sors TG, Caillot S, Ourry A (2004) Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of a 32-kDa vegetative storage protein that possesses chitinase activity in Medicago sativa taproots. Physiol Plant 120:113–123

    Article  PubMed  CAS  Google Scholar 

  • Mohan S, Ma PWK, Pechan T, Bassford ER, Williams WP, Luthe DS (2006) Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J Insect Physiol 52:21–28

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Gotoh T (2004) Arginine metabolic enzymes, nitric oxide and infection. J Nutr 134:2820S–2825S

    PubMed  CAS  Google Scholar 

  • Mourad G, King J (1995) L-O-Methylthreonine resistant mutant of Arabidopsis defective in isoleucine feedback regulation. Plant Physiol 107:43–52

    PubMed  CAS  Google Scholar 

  • Pechan T, Cohen A, Williams WP, Luthe DS (2002) Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci USA 99:13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Perkins MC, Woods HA, Harrison JF, Elser JJ (2004) Dietary phosphorus affects the growth of larval Manduca sexta. Arch Insect Biochem Physiol 55:153–168

    Article  PubMed  CAS  Google Scholar 

  • Perozich J, Hempel J, Morris SM Jr (1998) Roles of conserved residues in the arginase family. Biochim Biophys Acta 1382:23–37

    PubMed  CAS  Google Scholar 

  • Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. Recent Adv Phytochem 10:168–213

    CAS  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants – Genes for improving defenses against insects and pathogens. Annu Rev Phytopath 28:425–449

    Article  CAS  Google Scholar 

  • Samach A, Broday L, Hareven D, Lifschitz E (1995) Expression of an amino acid biosynthesis gene in tomato flowers: developmental upregulation and MeJa response are parenchyma-specific and mutually compatible. Plant J 8:391–406

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Hareven D, Gutfinger T, Ken-Dror S, Lifschitz E (1991) Biosynthetic threonine deaminase gene of tomato: isolation, structure, and upregulation in floral organs. Proc Natl Acad Sci USA 88:2678–2682

    Article  PubMed  CAS  Google Scholar 

  • Satriano J (2004) Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article. Amino Acids 26:321–329

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  • Sekowska A, Danchin A, Risler JL (2000) Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology 146:1815–1828

    PubMed  CAS  Google Scholar 

  • Sidorov V, Menczel L, Maliga P (1981) Isoleucine-requiring Nicotiana plant deficient in threonine deaminase. Nature 294:87–88

    Article  CAS  Google Scholar 

  • Staswick PE (1990) Novel regulation of vegetative storage protein genes. Plant Cell 2:1–6

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE (1994) Storage proteins of vegetative plant tissue. Annu Rev Plant Physiol Plant Mol Biol 45:303–322

    Article  CAS  Google Scholar 

  • Staswick PE, Huang JF, Rhee Y (1991) Nitrogen and methyl jasmonate induction of soybean vegetative storage protein genes. Plant Physiol 96:130–136

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–754

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Zhang ZY, Clemente TE, Specht JE (2001) Efficient down-regulation of the major vegetative storage protein genes in transgenic soybean does not compromise plant productivity. Plant Physiol 127:1819–1826

    Article  PubMed  CAS  Google Scholar 

  • Strassner J, Schaller F, Frick UB, Howe GA, Weiler EW, Amrhein N, Macheroux P, Schaller A (2002) Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32:585–601

    Article  PubMed  CAS  Google Scholar 

  • Szamosi I, Shaner DL, Singh BK (1993) Identification and characterization of a biodegradative form of threonine dehydratase in senescing tomato (Lycopersicon esculentum) leaf. Plant Physiol 101:999–1004

    PubMed  CAS  Google Scholar 

  • Umbarger HE (1956) Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science 123:848

    Article  PubMed  CAS  Google Scholar 

  • Utsugi S, Sakamoto W, Murata M, Motoyoshi F (1998) Arabidopsis thaliana vegetative storage protein (VSP) genes: gene organization and tissue-specific expression. Plant Mol Biol 38:565–576

    Article  PubMed  CAS  Google Scholar 

  • Van Damme EJM, Hause B, Hu JL, Barre A, Rouge P, Proost P, Peumans WJ (2002) Two distinct jacalin-related lectins with a different specificity and subcellular location are major vegetative storage proteins in the bark of the black mulberry tree. Plant Physiol 130:757–769

    Article  PubMed  Google Scholar 

  • Vincendeau P, Gobert AP, Daulouede S, Moynet D, Mossalayi MD (2003) Arginases in parasitic diseases. Trends Parasitol 19:9–12

    Article  PubMed  CAS  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Wang JH, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta220:87–96

    Article  PubMed  CAS  Google Scholar 

  • Wessel PM, Graciet E, Douce R, Dumas R (2000) Evidence for two distinct effector-binding sites in threonine deaminase by site-directed mutagenesis, kinetic, and binding experiments. Biochemistry 39:15136–15143

    Article  PubMed  CAS  Google Scholar 

  • Yeh KW, Chen JC, Lin MI, Chen YM, Lin CY (1997) Functional activity of sporamin from sweet potato (Ipomoea batatas Lam): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33:565–570

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, H., Gonzales-Vigil, E., Howe, G.A. (2008). Action of Plant Defensive Enzymes in the Insect Midgut. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_13

Download citation

Publish with us

Policies and ethics