Skip to main content

Plant Protease Inhibitors: Functional Evolution for Defense

  • Chapter
Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol 57:189–202

    Article  PubMed  CAS  Google Scholar 

  • Bayes A, Comellas-Bigler M, de la Vega MR, Maskos K, Bode W, Aviles FX, Jongsma MA, Beekwilder J, Vendrell J (2005) Structural basis of the resistance of an insect carboxypeptidase to plant protease inhibitors. Proc Natl Acad Sci USA 102:16602–16607

    Article  PubMed  CAS  Google Scholar 

  • Bayes A, de la Vega MR, Vendrell J, Aviles FX, Jongsma MA, Beekwilder J (2006) Response of the digestive system of Helicoverpa zea to ingestion of potato carboxypeptidase inhibitor and characterization of an uninhibited carboxypeptidase B. Insect Biochem Mol Biol 36:654–664

    Article  PubMed  CAS  Google Scholar 

  • Beekwilder J, Schipper B, Bakker P, Bosch D, Jongsma M (2000) Characterization of potato proteinase inhibitor II reactive site mutants. Eur J Biochem 267:1975–1984

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Schechter I (1970) Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Biol Sci 257:249–264

    Article  CAS  Google Scholar 

  • Birk Y, Gertler A, Khalef S (1963) A pure trypsin inhibitor from soya beans. Biochem J87:281–284

    PubMed  CAS  Google Scholar 

  • Bode W, Huber R (2000) Structural basis of the endoproteinase–protein inhibitor interaction. Biochim Biophys Acta 1477:241–252

    PubMed  CAS  Google Scholar 

  • Borovsky D, Carlson DA, Griffin PR, Shabanowitz J, Hunt DF (1990) Mosquito oostatic factor: a novel decapeptide modulating trypsin-like enzyme biosynthesis in the midgut. FASEB J 4:3015–3020

    PubMed  CAS  Google Scholar 

  • Borovsky D, Rabindran S, Dawson WO, Powell CA, Iannotti DA, Morris TJ, Shabanowitz J, Hunt DF, DeBondt HL, DeLoof A (2006) Expression of Aedes trypsin-modulating oostatic factor on the virion of TMV: a potential larvicide. Proc Natl Acad Sci USA 103:18963–18968

    Article  PubMed  CAS  Google Scholar 

  • Bowman DE (1946) Differentiation of soy bean antitryptic factors. Proc Soc Exp Biol Med63:547–550

    CAS  Google Scholar 

  • Bown DP, Wilkinson HS, Gatehouse JA (1997) Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families. Insect Biochem Mol Biol 27:625–638

    Article  PubMed  CAS  Google Scholar 

  • Bown DP, Wilkinson HS, Gatehouse JA (2004) Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors. Physiol Entomol 29:278–290

    Article  CAS  Google Scholar 

  • Brito LO, Lopes AR, Parra JRP, Terra WR, Silva MC (2001) Adaptation of tobacco budwormHeliothis virescens to proteinase inhibitors may be mediated by the synthesis of new proteinases. Comp Biochem Physiol Biochem Mol Biol 128:365–375

    Article  CAS  Google Scholar 

  • Chougule NP, Giri AP, Sainani MN, Gupta VS (2005) Gene expression patterns of Helicoverpa armigera gut proteases. Insect Biochem Mol Biol 35:355–367

    Article  PubMed  CAS  Google Scholar 

  • Clauss MJ, Mitchell-Olds T (2004) Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes. Genetics 166:1419–1436

    Article  PubMed  CAS  Google Scholar 

  • De Leo F, Gallerani R (2002) The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. Insect Biochem Mol Biol 32:489–496

    Article  PubMed  Google Scholar 

  • Ferreira C, Capella AN, Sitnik R, Terra WR (1994) Properties of the digestive enzymes and the permeability of the peritrophic membrane of Spodoptera frugiperda (Lepidoptera) larvae. Comp Biochem Physiol Physiol 107:631–640

    Article  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse J, Capell T, Christou P, Gatehouse AMR (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15:13–19

    Article  PubMed  CAS  Google Scholar 

  • Girard C, Le Metayer M, Bonade-Bottino M, Pham-Delegue MH, Jouanin L (1998) High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae. Insect Biochem Mol Biol 28:229–237

    Article  PubMed  CAS  Google Scholar 

  • Giri AP, Harsulkar AM, Deshpande VV, Sainani MN, Gupta VS, Ranjekar PK (1998) Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol 116:393–401

    Article  CAS  Google Scholar 

  • Gosalia DN, Salisbury CM, Ellman JA, Diamond SL (2005) High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Mol Cell Prot 4:626–636

    Article  CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves – possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt HM, Ryan CA, James MN (1989) Structure of the complex of Streptomyces griseus proteinase B and polypeptide chymotrypsin inhibitor-1 from russet burbank potato tubers at 2.1 Ã… resolution. J Mol Biol 205:201–228

    Article  PubMed  CAS  Google Scholar 

  • Gruden K, Kuipers AGJ, Guncar G, Slapar N, Strukelj B, Jongsma MA (2004) Molecular basis of colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases. Insect Biochem Mol Biol 34:365–375

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim MA (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotech 17:1223–1226

    Article  CAS  Google Scholar 

  • Hejgaard J (2005) Inhibitory plant serpins with a sequence of three glutamine residues in the reactive center. Biol Chem 386:1319–1323

    Article  PubMed  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163

    Article  CAS  Google Scholar 

  • Iwai K, Fushiki T, Fukuoka S (1988) Pancreatic-enzyme secretion mediated by novel peptide: monitor peptide hypothesis. Pancreas 3:720–728

    Article  PubMed  CAS  Google Scholar 

  • Jongsma MA, Bakker PL, Peters J, Bosch D, Stiekema WJ (1995) Adaptation of Spodoptera exigua larvae to plant proteinase-inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 92:8041–8045

    Article  PubMed  CAS  Google Scholar 

  • Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43:885–895

    Article  PubMed  CAS  Google Scholar 

  • Koepke J, Ermler U, Warkentin E, Wenzl G, Flecker P (2000) Crystal structure of cancer chemopreventive Bowman–Birk inhibitor in ternary complex with bovine trypsin at 2.3 Ã… resolution. Structural basis of janus-sfaced serine protease inhibitor specificity. J Mol Biol 298:477–491

    CAS  Google Scholar 

  • Kunitz M (1946) Crystalline soybean trypsin inhibitor. J Gen Physiol 29:149–154

    Article  CAS  Google Scholar 

  • Laskowski M, Kato I, Ardelt W, Cook J, Denton A, Empie MW, Kohr WJ, Park SJ, Parks K, Schatzley BL, Schoenberger OL, Tashiro M, Vichot G, Whatley HE, Wieczorek A, Wieczorek M (1987) Ovomucoid 3rd domains from 100 avian species – isolation, sequences, and hypervariability of enzyme-inhibitor contact residues. Biochemistry 26:202–221

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Salzman RA, Pankiw T, Zhu-Salzman K (2004) Transcriptional regulation in southern corn rootworm larvae challenged by soyacystatin N. Insect Biochem Mol Biol 34:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar-Leighton S, Broadway RM (2001a) Identification of six chymotrypsin cDNAs from larval midguts of Helicoverpa zea and Agrotis ipsilon feeding on the soybean (Kunitz) trypsin inhibitor. Insect Biochem Mol Biol 31:633–644

    Article  CAS  Google Scholar 

  • Mazumdar-Leighton S, Broadway RM (2001b) Transcriptional induction of diverse midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochem Mol Biol 31:645–657

    Article  CAS  Google Scholar 

  • Michaud D (1997) Avoiding protease-mediated resistance in herbivorous pests. Trends Biotechnol 15:4–6

    Article  CAS  Google Scholar 

  • Molina MA, Marino C, Oliva B, Aviles FX, Querol E (1994) C-tail valine is a key residue for stabilization of complex between potato inhibitor and carboxypeptidase-A. J Biol Chem269:21467–21472

    PubMed  CAS  Google Scholar 

  • Moon J, Salzman RA, Ahn JE, Koiwa H, Zhu-Salzman K (2004) Transcriptional regulation in cowpea bruchid guts during adaptation to a plant defence protease inhibitor. Insect Mol Biol 13:283–291

    Article  PubMed  CAS  Google Scholar 

  • Nauen R, Sorge D, Sterner A, Borovsky D (2001) Tmof-like factor controls the biosynthesis of serine proteases in the larval gut of Heliothis virescens. Arch Insect Biochem Physiol47:169–180

    Article  PubMed  CAS  Google Scholar 

  • Pereira PJB, Bergner A, Macedo-Ribeiro S, Huber R, Matschiner G, Fritz H, Sommerhoff CP, Bode W (1998) Human β-tryptase is a ring-like tetramer with active sites facing a central pore. Nature 392:306–311

    Article  PubMed  CAS  Google Scholar 

  • Qu LJ, Chen J, Liu MH, Pan NS, Okamoto H, Lin ZZ, Li CY, Li DH, Wang JL, Zhu GF, Zhao X, Chen X, Gu HG, Chen ZL (2003) Molecular cloning and functional analysis of a novel type of Bowman–Birk inhibitor gene family in rice. Plant Physiol 133:560–570

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucl Acids Res 34:D270–D272

    Article  PubMed  CAS  Google Scholar 

  • Rees DC, Lipscomb WN (1982) Refined crystal-structure of the potato inhibitor complex of carboxypeptidase-A at 2.5-A resolution. J Mol Biol 160:475–498

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants – genes for improving defenses against insects and pathogens. Ann Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Song HK, Suh SW (1998) Kunitz-type soybean trypsin inhibitor revisited: refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator. J Mol Biol 275:347–363

    Article  PubMed  CAS  Google Scholar 

  • Spannagel AW, Green GM, Guan DF, Liddle RA, Faull K, Reeve JR (1996) Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc Natl Acad Sci USA 93:4415–4420

    Article  PubMed  CAS  Google Scholar 

  • Telang MA, Giri AP, Sainani MN, Gupta VS (2005) Characterization of two midgut proteinases of Helicoverpa armigera and their interaction with proteinase inhibitors. J Insect Physiol51:513–522

    Article  PubMed  CAS  Google Scholar 

  • Tortiglione C, Fanti P, Pennacchio F, Malva C, Breuer M, De Loof A, Monti LM, Tremblay E, Rao R (2002) The expression in tobacco plants of Aedes aegypti trypsin modulating oostatic factor (aea-tmof) alters growth and development of the tobacco budworm, Heliothis virescens. Mol Breed 9:159–169

    Article  CAS  Google Scholar 

  • Tortiglione C, Fogliano V, Ferracane R, Fanti P, Pennacchio F, Monti LM, Rao R (2003) An insect peptide engineered into the tomato prosystemin gene is released in transgenic tobacco plants and exerts biological activity. Plant Mol Biol 53:891–902

    Article  PubMed  CAS  Google Scholar 

  • Volpicella M, Ceci LR, Cordewener J, America T, Gallerani R, Bode W, Jongsma MA, Beekwilder J (2003) Properties of purified gut trypsin from Helicoverpa zea, adapted to proteinase inhibitors. Eur J Biochem 270:10–19

    Article  PubMed  CAS  Google Scholar 

  • Volpicella M, Ceci LR, Gallerani R, Jongsma MA, Beekwilder J (2001) Functional expression on bacteriophage of the mustard trypsin inhibitor MTI-2. Biochem Biophys Res Commun 280:813–817

    Article  PubMed  CAS  Google Scholar 

  • Volpicella M, Cordewener J, Jongsma MA, Gallerani R, Ceci LR, Beekwilder J (2006) Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut. J Chrom B Analyt Technol Biomed Life Sci 833:26–32

    Article  CAS  Google Scholar 

  • Yang L, Fang ZY, Dicke M, van Loon JJA, Jongsma MA (2008) The diamondback moth, Plutella xylostella specifically inactivates Mustard Trypsin Inhibitor 2(MTI2) to overcome host plant defence (submitted)

    Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Hui DQ, Baldwin IT (2004) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol 134:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jongsma, M.A., Beekwilder, J. (2008). Plant Protease Inhibitors: Functional Evolution for Defense. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_11

Download citation

Publish with us

Policies and ethics