Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alawadhi, E. M. and Amon, C. H., 2003, “PCM thermal control unit for portable electronic devices: Experimental and numerical studies,” IEEE Trans. Comp. and Pack. Tech., 26, 116–125.

    Google Scholar 

  • Amiri, A., and Vafai, K., 1994, “Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media,” Int. J. Heat Mass Transfer, 37, 939–954.

    Google Scholar 

  • vAshby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., and Wadley, H. J. G., 2000, Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford.

    Google Scholar 

  • Beckermann, C. and Viskanta, R., 1988, “Natural convection solid/liquid phase change in porous media,” Int. J. Heat Mass Transfer, 31,35–46.

    Google Scholar 

  • Bejan, A., 1989, “Theory of melting with natural convection in an enclosed porous medium,” ASME J. Heat Transfer, 111, 407–415.

    Google Scholar 

  • Benard, C., Gobin, C., and Martinez, F., 1985, “Melting in rectangular enclosures: experiments and numerical simulations,” ASME J. Heat Transfer, 107, 794–803.

    Google Scholar 

  • Boomsma, K., Poulikakos, D., and Zwick, F., 2003, “Metal foams as compact high performance heat exchangers,” Mech. Matls., 35, 1161–1176.

    Article  Google Scholar 

  • Calmidi, V. V., and Mahajan, R. L., 2000, “Forced convection in high porosity metal foams,” ASME J. Heat Transfer, 122, 557–565.

    Google Scholar 

  • Chellaiah, S. and Viskanta, R., 1990a, “Natural convection melting of a frozen porous medium,” Int. J. Heat Mass Transfer, 33, 887–899.

    Article  Google Scholar 

  • Chellaiah, S. and Viskanta, R., 1990b, “Melting of ice-aluminum balls systems,” Exp. Thermal Fluid Sci., 3, 222–231.

    Article  Google Scholar 

  • Ellinger, E. A. and Beckermann, C., 1991, “On the effect of porous layers on melting heat transfer in an enclosure,” Exp. Thermal Fluid Sci., 4, 619–629.

    Article  Google Scholar 

  • Ferziger, J. H. and Peric, M., 1995, Computational Methods for Fluid Dynamics, Springer-Verlag, New York.

    Google Scholar 

  • Frankel, N. A., and Acrivos, A., 1968, “Heat and mass transfer from small spheres and cylinders freely suspended in shear flow,” Phys. Fluids, 11, 1913–1918.

    Article  MATH  Google Scholar 

  • Gau, C. and Viskanta, R., 1986, “Melting and solidification of a pure metal on a vertical wall,” ASME J. Heat Transfer, 108, 174–181.

    Google Scholar 

  • Harris, K. T., Haji-Sheikh, A., and Agwu Nnanna, A. G., 2001, “Phase-change phenomena in porous media – a non-local thermal equilibrium model,” Int. J. Heat Mass Transfer, 44, 1619–1625.

    Google Scholar 

  • Hwang, J. J., Hwang, G. J., Yeh, R. H., and Chao, C. H., 2002, “Measument of interstitial convective heat transfer coefficient and frictional drag for flow across metal foams,” J. Heat Transfer, 124, 120–129.

    Article  Google Scholar 

  • Jany, P. and Bejan, A., 1988a, “Scaling theory of melting with natural convection in an enclosure,” Int. J. Heat Mass Transfer, 31, 1221–1235.

    Google Scholar 

  • Jany, P. and Bejan, A., 1988b, “Scales of melting in the presence of natural convection in a rectangular cavity filled with porous medium,” ASME J. Heat Transfer, 110, 526–529.

    Article  Google Scholar 

  • Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.

    Google Scholar 

  • Krishnan, S., Garimella, S. V., and Murthy, J. Y., 2008, “Simulation of thermal transport in open-cell metal foams: effect of periodic unit cell structure,” ASME J. Heat Transfer, 130, 024503.

    Google Scholar 

  • Krishnan, S., Murthy, J. Y., and Garimella, S. V., 2004a, “A two-temperature model for analysis of passive thermal control systems,” ASME J. Heat Transfer, 126, 628–637.

    Article  Google Scholar 

  • Krishnan, S., Murthy, J. Y., and Garimella, S. V., 2004b, “A two-temperature model for solid/liquid phase change in metal foams,” Proc. ASME Heat Transfer/Fluids Engg. Summer Conf., HT-FED2004–56337.

    Google Scholar 

  • Krishnan, S., Murthy, J. Y., and Garimella, S. V., 2005, “A two-temperature model for solid-liquid phase change in metal foams,” J. Heat Transfer, 127, 995–1004.

    Article  Google Scholar 

  • Krishnan, S., Murthy, J. Y., and Garimella, S. V., 2006a, “Direct simulation of transport in open-cell metal foams,” ASME J. Heat Transfer, 128, 793–799.

    Article  Google Scholar 

  • Krishnan, S., Murthy, J. Y., and Garimella, S. V., 2007, “Analysis of solid–liquid phase change under periodic pulse heating,” ASME J. Heat Transfer, 129, 395–400.

    Article  Google Scholar 

  • Kuwahara, F., Shirota, M., and Nakayama, A., 2001, “A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media,” Int. J. Heat Mass Transfer, 44, 1153–1159.

    Article  MATH  Google Scholar 

  • Minkowycz, W. J., Haji-Sheikh, A., and Vafai, K., 1999, “On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number,” Int. J. Heat Mass Transfer, 42, 3373–3385.

    Article  MATH  Google Scholar 

  • Morgan, V. T., 1975, “The overall convective heat transfer from smooth circular cylinders,” Adv. Heat Transfer, 11, 199–264.

    Google Scholar 

  • Nield, D. A. and Bejan, A., 1992, Convection in Porous Media, Springer-Verlag, New York.

    Google Scholar 

  • Phanikumar, M. S., and Mahajan, R. L., 2002, “Non-Darcy natural convection in high porosity metal foams,” Int. J. Heat Mass Transfer, 45, 3781–3793.

    Article  MATH  Google Scholar 

  • Price D. C., 2003, “A review of selected thermal management solutions for military electronic systems,” IEEE Trans. Comp. Pack. Tech., 26,26–39.

    Article  Google Scholar 

  • Sparrow, E. M., Patankar, S. V., and Ramadhyani, S., 1977, “Analysis of melting in the presence of natural convection in the melt region,” ASME J. Heat Transfer, 99, 520–526.

    Google Scholar 

  • Tong, X., Khan, J. A., and Amin, M. R., 1996, “Enhancement of heat transfer by inserting a metal matrix into a phase change material,” Num. Heat Transfer: Part A, 30, 125–141.

    Article  Google Scholar 

  • Vafai, K., and Sozen, M., 1990, “An investigation of a latent heat storage porous bed and condensing flow through it,” ASME J. Heat Transfer, 112, 1014–1022.

    Article  Google Scholar 

  • Vesligaj, M. J. and Amon, C. H., 1999, “Transient thermal management of temperature fluctuations during time varying workloads on portable electronics,” IEEE Trans. Comp. Pack. Tech., 22, 541–550.

    Article  Google Scholar 

  • Viskanta, R., 1991, “Phase change heat transfer in porous media,” Proc. 3rd Int. Symposium Cold Region Heat Transfer, Fairbanks, 1–24.

    Google Scholar 

  • Wakao, N., and Kaguei, S., 1982, Heat and Mass Transfer in Packed Beds, Gordon and Breach, London.

    Google Scholar 

  • Yao, L. S. and Prusa, J., 1989, “Melting and freezing,” Adv. Heat Transfer, 19,1–95.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Krishnan, S., Murthy, J.Y., Garimella, S.V. (2008). Metal Foams as Passive Thermal Control Systems. In: Vadász, P. (eds) Emerging Topics in Heat and Mass Transfer in Porous Media. Theory and Applications of Transport in Porous Media, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8178-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8178-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8177-4

  • Online ISBN: 978-1-4020-8178-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics