The Role of Silicon in Dendritic Polymer Chemistry

  • Petar R. Dvornic
  • Michael J. Owen
Part of the Advances in Silicon Science book series (ADSS, volume 2)

During the last two decades, dendritic polymers, particularly dendrimers and hyper-branched polymers, have become one of the fastest growing areas of interest in polymer science [1]. This can be easily seen from the impressive growth in the number of publications on these unique polymers, which soared from less than a dozen in the 1970s, to over 10,000 (in scientific journals and patent literature) by the end of 2007 [2]. At present, new publications continue to appear regularly, and only the future will tell how much further this trend will continue.

Of many different reasons that may have caused such a great interest in dendritic polymers, the following seem especially important. First, the natural beauty and symmetry of dendritic, particularly dendrimer, structures is hard to resist and it has certainly inspired many scientists to design novel chemical compositions, architectural arrangements and artistic presentations of these unique molecules. Regardless of whether they are shown as simple schematics, or as elaborate computer-generated 3D images, dendritic structures have great aesthetic appeal, and are very inspirational for creative thinking, further modifications or potential applications (see Fig. 1.1).

Keywords

Glycerol Catalysis Propylene Fullerene Anhydride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    In principle, the class of dendritic polymers also includes dendrons, arborescent polymers (sometimes also referred to as dendrigrafts) and dendronized polymers, but (and especially in the silicon-containing dendritic polymers field) the interest in dendrimers and hyperbranched polymers has been disproportionally more pronounced.Google Scholar
  2. 2.
    A SciFinder search of the field in November of 2007 revealed 11,844 references containing the concept of dendrimers and 13,769 references containing the concept of hyperbranched polymers.Google Scholar
  3. 3.
    Dvornic PR, Tomalia DA (1996) Curr Opin Colloid Interface Sci 1:221.CrossRefGoogle Scholar
  4. 4.
    Dvornic PR, Tomalia DA (1996) Sci Spectra 5:36.Google Scholar
  5. 5.
    See for example: Kadish KM, Ruoff RS (2000) Fullerenes: Chemistry, physics, and technology. Wiley-Interscience, New York.Google Scholar
  6. 6.
    See for example: (a) Voronkov MG, Lavrent'yev VI (1982) Top Curr Chem 102:199. (b) Feher FJ (2000) A survey of properties and chemistry: Polyhedral oligosilsesquioxanes and heterosilsesquioxanes, Gelest Inc. Catalog, Tullytown, PA, pp. 43–59. (c) Lichtenhahn JD (1996) Silsesquioxane-based polymers. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC Press, New York, Vol. 10, pp. 7768–7778.Google Scholar
  7. 7.
    Ijima S (1991) Nature 354:56.CrossRefGoogle Scholar
  8. 8.
    See for example: (a) Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons. Concepts, synthesis, applications, Wiley-VCH Verlag, Weinheim, Germany. (b) Fréchet JMJ, Tomalia DA (eds) (2001) Dendrimers and other dendritic polymers. Wiley, Chichester.Google Scholar
  9. 9.
    See for example: (a) Mishra MK, Kobayashi S (1999) Star and hyperbranched polymers. Marcel Dekker, New York. (b) Sunder A, Heinemann J, Frey H (2000) Chem Eur J 6(14):2499. (c) Hult A (2003) Hyperbranched polymers. In: Mark HF (ed) Encyclopedia of polymer science and technology, 3rd edn. Wiley-Interscience, New York, Vol. 2, pp. 722–743. (d) Gao C, Yan D (2004) Prog Polym Sci 29(3):183.Google Scholar
  10. 10.
    Descriptor “soft” is used here to distinguish nano-structured materials and products of synthetic organic chemistry, usually prepared by controlled bottom-up synthesis from sub-nanoscopic small molecules, from “hard” counterparts of inorganic chemistry and metallurgy prepared either by the bottom-up manipulations of single atoms or by the top-down grinding of macroscopic samples.Google Scholar
  11. 11.
    Tomalia DA, Dvornic PR (1996) Dendritic polymers, divergent synthesis (Starburst polyami-doamine dendrimers). In: Salamone JC (ed) Polymeric materials encyclopedia. CRC Press, Boca Raton, FL, Vol. 3, pp. 1814–1830.Google Scholar
  12. 12.
    Tomalia DA, Hedstrand DM, Wilson LR (1990) Dendritic polymers. In: Mark HF, Bikales NM, Overberger CG, Menges G (eds) Encyclopedia of polymer science and engineering. Wiley-Interscience, Vol. Index Volume, pp. 46–92.Google Scholar
  13. 13.
    Dvornic PR, Tomalia DA (1995) Macromol Symp 98:403.Google Scholar
  14. 14.
    de Gennes PG, Hervet H (1983) Phys Lett 44:L351.CrossRefGoogle Scholar
  15. 15.
    (a) Flory PJ (1952) J Am Chem Soc 74:2718. (b) Flory PJ (1953) Ann NY Acad Sci 57(4):327.Google Scholar
  16. 16.
    (a) Kienle RH, Hovey AG (1929) J Am Chem Soc 51:509. (b) Kienle RH, van der Meulen PA, Petke FE (1939) J Am Chem Soc 61:2258.Google Scholar
  17. 17.
    Buhleier E, Wehner W, Vögtle F (1978) Synthesis 2:155.CrossRefGoogle Scholar
  18. 18.
    (a) Moors R, Vögtle F (1993) Chem Ber 126:2133. (b) Wörner C, Mülhaupt R (1993) Angew Chem Int Ed Engl 32(9):1306. (c) de Brabander-van der Berg EMM, Meijer EW (1993) Angew Chem Int Ed Engl 32(9):1308.Google Scholar
  19. 19.
    (a) Denkewalter RG, Kolc JF, Lukasavage WJ (1981) US Patent 4,289,872. (b) Denkewalter RG, Kolc JF, Lukasavage WJ (1983) US Patent 4,410,688.Google Scholar
  20. 20.
    (a) Aharoni SM, Crosby III CR, Walsh EK (1982) Macromolecules 15:1093. (b) Aharoni SM, Murthy NS (1983) Polym Commun 24:132.Google Scholar
  21. 21.
    Newkome GR, Yao Z, Baker GR, Gupta VK (1985) J Org Chem 50:2003.CrossRefGoogle Scholar
  22. 22.
    (a) Tomalia DA, Dewald JR (1985) US Patent 4,507,466. (b) Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J (Tokyo) 17(1):117.Google Scholar
  23. 23.
  24. 24.
    Kim YH, Webster OW (1988) Polym Preprints 29(2):310.Google Scholar
  25. 25.
    Miller TM, Neenan TX (1990) Chem Mat 2(4):346.CrossRefGoogle Scholar
  26. 26.
    Majoros I, Baker JR, Jr (eds) (2008) Dendrimer based nanomedicine. Pan Stanford, Singapore.Google Scholar
  27. 27.
    Dvornic PR, Uppuluri SE (2001) Rheology and solution properties of dendrimers, Chapter 14 in [8b], pp. 331–360.Google Scholar
  28. 28.
    (a) Hawker CJ, Fréchet JMJ (1990) J Am Chem Soc 112:7638. (b) Hawker CJ, Fréchet JMJ (1990) J Chem Soc Chem Commun 1010.Google Scholar
  29. 29.
    Hawker CJ, Fréchet JMJ (1995) Three-dimensional dendritic macromolecules: Design, synthesis and properties. In: Ebdon JR, Eastmond GC (eds) New methods of polymer synthesis. Blackie Academic and Professional, London, UK, Vol. 2, pp. 290–330.Google Scholar
  30. 30.
    (a) Russo S, Boulares A (1998) Macromol Symp 128:13. (b) Russo S, Boulares A, da Rin A (1999) Macromol Symp 143:309.Google Scholar
  31. 31.
    For excellent earlier reviews in silicon-containing dendritic polymers see for example: (a) Neumann D, Matisons JG (2003) Multiple roles of silicon in dendritic chemistry; Chapter 8 in Nalwa HS (ed) Handbook of organic–inorganic hybrid materials and nanocomposites. American Scientific Publishers, Stevenson Ranch, CA, Vol. 2, pp. 295–330. (b) Lukevicz E, Arsenyan P, Pudova O (2002) Main Group Met Chem 25:135. (c) Lang H, Lühmann B (2001) Adv Mater 13:1523. (d) Frey H, Schlenk C (2000) Top Curr Chem 210:69. (e) Krska SW, Son D, Seyferth D (2000) Organosilicon dendrimers, Chapter 23 in Jones RG et al. (eds) Silicon-containing polymers. Kluwer, Amsterdam, pp. 615–641. (f) Son DY (2000) Main Group Chem News 7:16. (g) Majoral J-P, Caminade A-M (1999) Chem Rev 99:845.Google Scholar
  32. 32.
    Brook MA (2000) Silicon in organic, organometallic and polymer chemistry. Wiley, New York, p. 4.Google Scholar
  33. 33.
    Rebrov EA, Muzafarov AM, Papkov VS, Zhdanov AA (1989) Dokl Akad Nauk SSSR 309:376.Google Scholar
  34. 34.
    (a) van der Made AW, van Leeuwen PWNM (1992) J Chem Soc Chem Commun 1400. (b) Roovers J, Toporowski PM, Zhou L-L (1992) Polym Preprints 33(1):182.Google Scholar
  35. 35.
    (a) Sekiguchi A, Nanjo M, Kabuto C, Sakurai H (1995) J Am Chem Soc 117:4195. (b) Lambert JB, Pflug JL, Stern CL (1995) Angew Chem Int Ed Engl 34(1):98. (c) Suzuki H, Kimata Y, Satoh S, Kuriyama A (1995) Chem Lett 293.Google Scholar
  36. 36.
    Hu J, Son DY (1998) Macromolecules 31:8644.CrossRefGoogle Scholar
  37. 37.
    (a) Kim C, Choi S-K (1997) Main Group Met Chem 20(3):143. (b) Kim C, An K (1997) Bull Korean Chem Soc 18(2):164.Google Scholar
  38. 38.
    Jaffrès P-A, Morris RE (1998) J Chem Soc Dalton Trans 2767.Google Scholar
  39. 39.
    Alonso B, Cuadrado I, Morán M, Losada J (1994) J Chem Soc Chem Commun 2575.Google Scholar
  40. 40.
    Knapen JWJ, van der Made AW, de Wilde JC, van Leeuwen PWNM, Wijkens P, Grove DM, van Koten G (1994) Nature 372:659.CrossRefGoogle Scholar
  41. 41.
    Ponomarenko SA, Rebrov EA, Boiko NI, Vasilenko NV, Muzafarov AM, Freidzon YAS, Shibaev VP (1994) Polym Sci A36:896.Google Scholar
  42. 42.
    Tomalia DA, Dvornic PR (1994) Nature 372:617.CrossRefGoogle Scholar
  43. 43.
    (a) de Leuze-Jallouli AM, Swanson DR, Perz SV, Owen MJ, Dvornic PR (1997) Polym Mat Sci Ed 77:67. (b) Dvornic PR, de Leuze-Jallouli AM, Swanson D, Owen MJ, Perz SV (1998) US Patent 5,739,218. (c) Dvornic PR, de Leuze-Jallouli AM, Owen MJ, Perz SV (2000) Macromolecules 33:5366.Google Scholar
  44. 44.
    Whitmarsh CW, Interrante LV (1991) Organometallics 10:1336.CrossRefGoogle Scholar
  45. 45.
    (a) Mathias LJ, Carothers TW (1991) J Am Chem Soc 113:4043. (b) Lach C, Frey H (1998) Macromolecules 31:2381.Google Scholar
  46. 46.
  47. 47.
    Decker GT, Graiver D, Tselepis AJ (1999) US Patent 6,001,945.Google Scholar
  48. 48.
    (a) Dvornic PR, Hu J, Meier DJ, Nowak RM (2002) US Patent 6,384,172 B1. (b) Dvornic PR, Hu J, Meier DJ, Nowak RM (2003) US Patent 6,646,089 B2.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Petar R. Dvornic
    • 1
  • Michael J. Owen
    • 1
  1. 1.Michigan Molecular InstituteMidlandUSA

Personalised recommendations