Raised Structures

  • Robert W. Johnstone
  • M. Parameswaran

Abstract

Surface-micromachined devices are typically contained in a volume specified by the area of the chip and the height of the thin-films used during fabrication. Even a very small chip will be several millimetres on a side. However, the total height of the thin-films will typically be measured in microns. Thus, surface-micromachined devices are quite constrained in this one direction1. This small vertical range can be a disadvantage.

Keywords

Silicate Torque Serpentine Verse Polysilicon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.S.J. Pister, M.W. Judy, S.R. Burgeett, and R.S. Fearing. Microfabricated hinges. saa, 33(3):249–256, 1992.Google Scholar
  2. [2]
    R.R.A. Syms and E.M. Yeatman. Self-assembly of three-dimensional microstructures using rotation by surface tension forces. Electronics Letters, 29(8):662–664, 1993.CrossRefGoogle Scholar
  3. [3]
    R.R.A. Syms. Surface tension powered self-assembly of 3-d micro-optomechanical structures. Journal of Microelectromechanical Systems, 8(4):448–455, 1999.CrossRefGoogle Scholar
  4. [4]
    V. Kaajakari and Amit Lal. Thermokinetic actuation for batch assembly of microscale hinged structures. Journal of Microelectromechanical Systems, 12(4):425–432, 2003.CrossRefGoogle Scholar
  5. [5]
    N.C. Tien, O. Solgaard, M.-H. Kiang, M. Daneman, K.Y. Lau, and R.S. Muller. Surfacemicromachined mirrors for laser-beam positioning. Sensors and Actuators A, 52(13):76–80, 1996.CrossRefGoogle Scholar
  6. [6]
    J.H. Comtois and V.M. Bright. Applications for surface-micromachined polysilicon thermal actuators and arrays. Sensors and Actuators A, 58(1):19–25, 1997.CrossRefGoogle Scholar
  7. [7]
    L.Y. Lin, E.L. Goldstein, and R.W. Tkach. Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects. IEEE Photonics Technology Letters, 10(4):525–527, 1998.CrossRefGoogle Scholar
  8. [8]
    S. Kurth, R. Hahn, C. Kaufmann, K. Kehr, J. Mehner, U. Wollmann, W. Dotzel, and T. Gessner. Silicon mirrors and micromirror arrays for spatial laser beam modulation. Sensors and Actuators A, 66(1–3):76–82,1998.CrossRefGoogle Scholar
  9. [9]
    A. Friedberger and R.S. Muller. Improved surface-micromachined hinges for fold-out structures. Journal of Microelectromechanical Systems, 7(3):315–319, 1998.CrossRefGoogle Scholar
  10. [ 10]
    K. SuzukiI. Shimoyama, and H. Miura, Insect-model based microrobot with elastic hinges. Journal of Microelectromechanical Systems, 3(1):4–9, 1994.CrossRefGoogle Scholar
  11. [ 11]
    E. Smela, O. Inganas, and I. Lundstrom. Controlled folding of micrometer-sized structures. Science, 268(5218):1735–1738, 1995.CrossRefGoogle Scholar
  12. [ 12]
    J.R. Reid, V.M. Bright, and J.T. Butler. Automated assembly of flip-up micromirrors. Sensors and Actuators A, 66(1–3):292–298, 1998.CrossRefGoogle Scholar
  13. [13]
    R. Yeh, E.J.J. Kruglick, and K.S.J. Pister. Surface-micromachined components for articulated microrobots. Journal of Microelectromechanical Systems, 5(1):10–17,1996.CrossRefGoogle Scholar
  14. [ 14]
    Y.W. Yi and C. Liu. Magnetic actuation of hinged microstructures. Journal of Microelectromechanical Systems, 8(1):10–17,1999.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Robert W. Johnstone
    • 1
  • M. Parameswaran
    • 1
  1. 1.Engineering ScienceSimon Fraser UniversityCanada

Personalised recommendations