Raised Structures

  • Robert W. Johnstone
  • M. Parameswaran


Surface-micromachined devices are typically contained in a volume specified by the area of the chip and the height of the thin-films used during fabrication. Even a very small chip will be several millimetres on a side. However, the total height of the thin-films will typically be measured in microns. Thus, surface-micromachined devices are quite constrained in this one direction1. This small vertical range can be a disadvantage.


Wafer Surface Microelectromechanical System Automate Assembly Manual Assembly Release Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.S.J. Pister, M.W. Judy, S.R. Burgeett, and R.S. Fearing. Microfabricated hinges. saa, 33(3):249–256, 1992.Google Scholar
  2. [2]
    R.R.A. Syms and E.M. Yeatman. Self-assembly of three-dimensional microstructures using rotation by surface tension forces. Electronics Letters, 29(8):662–664, 1993.CrossRefGoogle Scholar
  3. [3]
    R.R.A. Syms. Surface tension powered self-assembly of 3-d micro-optomechanical structures. Journal of Microelectromechanical Systems, 8(4):448–455, 1999.CrossRefGoogle Scholar
  4. [4]
    V. Kaajakari and Amit Lal. Thermokinetic actuation for batch assembly of microscale hinged structures. Journal of Microelectromechanical Systems, 12(4):425–432, 2003.CrossRefGoogle Scholar
  5. [5]
    N.C. Tien, O. Solgaard, M.-H. Kiang, M. Daneman, K.Y. Lau, and R.S. Muller. Surfacemicromachined mirrors for laser-beam positioning. Sensors and Actuators A, 52(13):76–80, 1996.CrossRefGoogle Scholar
  6. [6]
    J.H. Comtois and V.M. Bright. Applications for surface-micromachined polysilicon thermal actuators and arrays. Sensors and Actuators A, 58(1):19–25, 1997.CrossRefGoogle Scholar
  7. [7]
    L.Y. Lin, E.L. Goldstein, and R.W. Tkach. Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects. IEEE Photonics Technology Letters, 10(4):525–527, 1998.CrossRefGoogle Scholar
  8. [8]
    S. Kurth, R. Hahn, C. Kaufmann, K. Kehr, J. Mehner, U. Wollmann, W. Dotzel, and T. Gessner. Silicon mirrors and micromirror arrays for spatial laser beam modulation. Sensors and Actuators A, 66(1–3):76–82,1998.CrossRefGoogle Scholar
  9. [9]
    A. Friedberger and R.S. Muller. Improved surface-micromachined hinges for fold-out structures. Journal of Microelectromechanical Systems, 7(3):315–319, 1998.CrossRefGoogle Scholar
  10. [ 10]
    K. SuzukiI. Shimoyama, and H. Miura, Insect-model based microrobot with elastic hinges. Journal of Microelectromechanical Systems, 3(1):4–9, 1994.CrossRefGoogle Scholar
  11. [ 11]
    E. Smela, O. Inganas, and I. Lundstrom. Controlled folding of micrometer-sized structures. Science, 268(5218):1735–1738, 1995.CrossRefGoogle Scholar
  12. [ 12]
    J.R. Reid, V.M. Bright, and J.T. Butler. Automated assembly of flip-up micromirrors. Sensors and Actuators A, 66(1–3):292–298, 1998.CrossRefGoogle Scholar
  13. [13]
    R. Yeh, E.J.J. Kruglick, and K.S.J. Pister. Surface-micromachined components for articulated microrobots. Journal of Microelectromechanical Systems, 5(1):10–17,1996.CrossRefGoogle Scholar
  14. [ 14]
    Y.W. Yi and C. Liu. Magnetic actuation of hinged microstructures. Journal of Microelectromechanical Systems, 8(1):10–17,1999.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Robert W. Johnstone
    • 1
  • M. Parameswaran
    • 1
  1. 1.Engineering ScienceSimon Fraser UniversityCanada

Personalised recommendations