Skip to main content

Expression and possible functions of glutamate and GABA receptors in glial cells from the hippocampus

  • Chapter
Glial ⇔ Neuronal Signaling

Abstract

It is now quite clear that glial cells of all types have receptors. This is hardly surprising since it is the way that all cells sense their environment. However, their first identification some years ago in cultured and isolated glia (Reviewed by Kimelberg 1988; Porter and McCarthy, 1997) were surprising results to neuroscientists who had taken the biologically unsupportable view that only neurons had receptors since this was the way in which one neuron signaled to another. However, the implied perplexity here, why would glia have receptors still remains with us when we are asked the question but what do receptors on glia do? The problem is really that we are putting the cart before the horse, which although horses can push is not the most efficient arrangement for this type of conveyance. We are still trying to find out to a very large extent what glia do and then, although it will not be an epiphany, the functions of glial receptors will likely come into clearer focus. Another general horse and cart problem is that currently in biomedical research we are always asked to come up with a hypothesis for every investigation. This implies that we always know what we are in fact searching for and simply need to test it. This makes for difficulties in glial research where we do not seem to have an adequate database upon which reasonable hypotheses can be proposed. If we admit we are only looking for reliable data we will be criticized for being on a fishing expedition and thus in glial research we have to pretend that we know a lot more than we really do and that our experiments are more precise than they really are.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AA:

Arachidonic acid

AMPARs:

α-amino-3 hydroxy-5-methyl-4-isoxazole propionate receptors

CBF:

Cerebral blood flow

EETs:

Epoxyeicosatrienoic acid

EPSPs:

Excitatory postsynaptic potentials

GABA:

γ-aminobutyric acid

GABARs:

GABA receptors

GABAARs:

GABAA receptors

GABABRs:

GABAB receptors

GAT:

GABA transporter

GFAP:

Glial fibrillary acidic protein

GLAST:

L-glutamate/L-aspartate transporter

GLT-1:

Glutamate transporter 1

I K+OUT :

Outward potassium channel current

I Na + :

Sodium channel current

IPSPs:

Inhibitory postsynaptic potentials

mEPSPs:

Spontaneous miniature excitatory postsynaptic potentials

mGluR:

Metabotropic glutamate receptor

NMDA:

N-methyl-D-aspartate

OPCs:

Oligodendrocyte progenitor cells

ORAs:

Outwardly rectifying astrocytes

SC-RT-PCR:

Single-cell reverse transcrintase-nolvmerase chain reaction

I Swell, Cl- :

Swelling activated chloride currents

VRAs:

Variably rectifying astrocytes

References

  • Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E (2002) Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22:9430–9444.

    PubMed  CAS  Google Scholar 

  • Alkayed NJ, Birks EK (1997) Narayanan J, Petrie KA, Kohler-Cabot AE, Harder DR.Role of P-450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats. Stroke 28:1066–1072.

    Article  PubMed  CAS  Google Scholar 

  • Alkayed NJ, Narayanan J, Gebremedhin D, Medhora M, Roman RJ, Harder DR (1996) Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. Stroke 27:971–979.

    Article  PubMed  CAS  Google Scholar 

  • Bekar LK, Walz W (2002) Intracellular chloride modulates A-type potassium currents in astrocytes. Glia 39:207–216.

    Article  PubMed  Google Scholar 

  • Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191.

    Article  PubMed  CAS  Google Scholar 

  • Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–1308.

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285.

    Article  PubMed  CAS  Google Scholar 

  • Bordey A, Sontheimer H (1997) Postnatal development of ionic currents in rat hippocampal astrocytes in situ. J Neurophysiol 78:461–477.

    PubMed  CAS  Google Scholar 

  • Borges K, Kettenmann H (1995) Blockade of K+ channels induced by AMPA/kainate receptor activation in mouse oligodendrocyte precursor cells is mediated by Na+ entry. J Neurosci Res 42:579–593.

    Article  PubMed  CAS  Google Scholar 

  • Bormann J (1988) Patch-clamp analysis of GABA- and glycine-gated chloride channels. Adv Biochem Psychopharmacol 45:47–60.

    PubMed  CAS  Google Scholar 

  • Bowman CL, Kimelberg HK (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659.

    Article  PubMed  CAS  Google Scholar 

  • Barakat L, Bordey A (2002) GAT-1 and reversible GABA transport in Bergmann glia in slices. J Neurophysiol 88:1407–1419.

    PubMed  CAS  Google Scholar 

  • Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH, Sakmann B (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256:1566–1570.

    Article  PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA 1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192.

    PubMed  CAS  Google Scholar 

  • Cai Z, Schools GP, Kimelberg HK (2000) Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression. Glia 29:70–80.

    Article  PubMed  CAS  Google Scholar 

  • Cai Z, Kimelberg HK (1997) Glutamate receptor-mediated calcium responses in acutely isolated hippocampal astrocytes. Glia 21:380–389.

    Article  PubMed  CAS  Google Scholar 

  • Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18:4637–4645.

    PubMed  CAS  Google Scholar 

  • Chen N, Ren J, Raymond LA, Murphy TH (2001) Changes in agonist concentration dependence that are a function of duration of exposure suggests N-methyl-D-aspartate receptor nonsaturation during synaptic stimulation. Mol Pharmacol 59:212–219.

    PubMed  CAS  Google Scholar 

  • Christianson, G. E. In the presence of the creator: Isaac Newton and his Times):p165, 169, 1984. The Free Press.

    Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473.

    Article  PubMed  CAS  Google Scholar 

  • Dawson MRL, Levine JM, Reynolds R (2000) NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res 61:471–479.

    Article  PubMed  CAS  Google Scholar 

  • Dzubay JA, Jahr CE (1999) The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. J Neurosci 19:5265–5274.

    PubMed  CAS  Google Scholar 

  • Derouiche A, Frotscher M. (2001) Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 36:330–341.

    Article  PubMed  CAS  Google Scholar 

  • Eddington, A (1939) The philosophy of physical science. Cambridge UK, pp 16–17, 62.

    Google Scholar 

  • Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78:53–97.

    PubMed  CAS  Google Scholar 

  • Feynman, R. The Character of Physical Law. 7–173, 1965. The MIT Press. Cambridge, MA and London UK.

    Google Scholar 

  • ffrench-Constant C, Raff MC (1986) The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. Nature 323:335–338.

    Article  PubMed  CAS  Google Scholar 

  • Fraser DD, Mudrick-Donnon LA, MacVicar BA (1994) Astrocytic GABA receptors. Glia 11:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Fraser DD, Duffy S, Angelides KJ, Perez-Velazquez JL, Kettenmann H, MacVicar BA (1995) GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes. J Neurosci 15:2720–2732.

    PubMed  CAS  Google Scholar 

  • Gallo V, Zhou JM, McBain CJ, Wright P, Knutson PL, Armstrong RC (1996) Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J Neurosci 16:2659–2670.

    PubMed  CAS  Google Scholar 

  • Golgi, C (1885) Sulla fina anatomia degli organi centrali del sistema nervoso. Riv Sper Fremiat Med Leg Alienazioni Ment 11, 72–123.

    Google Scholar 

  • Guyton AC and Hall JE (2001), Textbook of Medical physiology, 10th edition, W.S. Saunders Company, Philadelphia.

    Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193.

    Article  PubMed  CAS  Google Scholar 

  • Hosli E, Hosli L (1990) Evidence for GABAB-receptors on cultured astrocytes of rat CNS: autoradiographic binding studies. Exp Brain Res 80:621–625.

    Article  PubMed  CAS  Google Scholar 

  • Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, Miwa A, Takayasu Y, Saito I, Tsuzuki K, Ozawa S (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292:926–929.

    Article  PubMed  CAS  Google Scholar 

  • Jabs R, Kirchhoff F, Kettenmann H, Steinhäuser C (1994) Kainate activates Ca2+-permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices. Pflugers Arch 426:310–319.

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Sakmann B (1992) Glutamate receptor channels in isolated patches from CA 1 and CA3 pyramidal cells of rat hippocampal slices. J Physiol 455:143–171.

    PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H and Ransom B (1995), Neuroglia, New York: Oxford University Press.

    Google Scholar 

  • Kettenmann H, Schachner M (1985) Pharmacological properties of gamma-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J Neurosci 5:3295–3301.

    PubMed  CAS  Google Scholar 

  • Kimelberg HK (1983) Primary astrocyte cultures--a key to astrocyte function. Cell Mol Neurobiol 3:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg, H. K. (1988) Glial cell receptors. Raven Press, New York.

    Google Scholar 

  • Kimelberg HK, Cai Z, Rastogi P, Charniga CJ, Goderie S, Dave V, Jalonen TO (1997) Transmitter-induced calcium responses differ in astrocytes acutely isolated from rat brain and in culture. J Neurochem 68:1088–1098.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg, H.K. (1995b) Receptors on astrocytes-what possible functions? Neurochem. Intl. 26:27–40.

    CAS  Google Scholar 

  • Kimelberg, H.K., Jalonen, T. and Walz, W. (1993) Regulation of the brain microenvironment: transmitters and ions. In: Astrocytes: Pharmacology and Function. S. Murphy (ed.) Academic Press. pp.193–228.

    Google Scholar 

  • Kimelberg, H.K. (1990). Cl- transport across glial membranes. In: Chloride Channels and Carriers in Nerve, Muscle and Glial Cells (eds. F.J. Alvarez-Leefmans and J. Russell) Plenum Press, pp 159–191.

    Google Scholar 

  • Kimelberg HK (1981) Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim Biophys Acta 646:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Kindler CH, Pietruck C, Yost CS, Sampson ER, Gray AT (2000) Localization of the tandem pore domain K+ channel TASK-1 in the rat central nervous system. Brain Res Mol Brain Res 80:99–108.

    Article  PubMed  CAS  Google Scholar 

  • Kinney GA, Spain WJ (2002) Synaptically Evoked GABA Transporter Currents in Neocortical Glia. J Neurophysiol 88:2899–2908.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Hama K (1986).Three-dimensional structure of astrocytes in the rat dentate gyrus. J Comp Neurol 249:242–260.

    Article  PubMed  CAS  Google Scholar 

  • Kressin, K, Kuprijanova, E, Jabs, R, Seifert, G, and Steinhäuser C (1995) Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices. Glia 15:173–87.

    Article  PubMed  CAS  Google Scholar 

  • Levine JM, Card JP (1987) Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: association with smooth protoplasmic astrocytes. J Neurosci 7:2711–2720.

    PubMed  CAS  Google Scholar 

  • Liu HN, Almazan G (1995) Glutamate induces c-fos proto-oncogene expression and inhibits proliferation in oligodendrocyte progenitors: receptor characterization. Eur J Neurosci 7:2355–2363.

    Article  PubMed  CAS  Google Scholar 

  • Liu S and Bergles DE (2001) Synaptic activation of GABAA receptors in hippocampal oligodendrocyt precursor cells. Soc Neurosci Abst 503.10.

    Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298.

    Article  PubMed  CAS  Google Scholar 

  • Lugaro E (1907) Sulle Funzioni Della Nevroglia. Riv D Pat Nery Ment 12:225–233.

    Google Scholar 

  • Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhäuser C. (2003) Segregated expression of AMPA-type glutamate receptors and glutamatetransporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–8.

    PubMed  CAS  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 97:4926–4931.

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256:1563–1566.

    Article  PubMed  CAS  Google Scholar 

  • Ogata K, Kosaka T (2002). Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:221–233.

    Article  PubMed  CAS  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001). Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812.

    Article  PubMed  CAS  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830.

    PubMed  CAS  Google Scholar 

  • Pastor A, Chvatal A, Sykova E, Kettenmann H (1995) Glycine- and GABA-activated currents in identified glial cells of the developing rat spinal cord slice. Eur J Neurosci 7:1188–1198.

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL and Webster, H.D.F.(1991) The Fine Structure of the Nervous system, Neurons and their supporting cells. Oxford University Press, New York.

    Google Scholar 

  • Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–55.

    Article  PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081.

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1995) Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ. J Neurochem 65:1515–1523.

    Article  PubMed  CAS  Google Scholar 

  • Riquelme R, Miralles CP, De Blas AL (2002) Bergmann Glia GABAA Receptors Concentrate on the Glial Processes that Wrap Inhibitory Synapses. J Neurosci 22:10720–10730.

    PubMed  CAS  Google Scholar 

  • Roy CS, Sherrington C (1890) On the regulation of the blood supply of the brain. J Physiol. 11, 85–108.

    PubMed  CAS  Google Scholar 

  • Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J 15:1270–1272.

    PubMed  CAS  Google Scholar 

  • Sagher O, Zhang XQ, Szeto W, Thai QA, Jin Y, Kassell NF, Lee KS (1993) Live computerized videomicroscopy of cerebral microvessels in brain slices. J Cereb Blood Flow Metab 13:676–682.

    Article  PubMed  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952.

    Article  PubMed  CAS  Google Scholar 

  • Schools GP, Zhou M, Kimelberg HK (2003) NG2 (+) cells freshly isolated from rat hippocampus are GFAP negative and electrophysiologically complex J Neurosci Res (in press)

    Google Scholar 

  • Schools GP and Kimelberg HK (2001) Metabotropic glutamate receptors in freshly isolated astrocytes from rat hippocampus. Prog Brain Res 132:301–312.

    Article  PubMed  Google Scholar 

  • Schools GP and Kimelberg HK (1999) mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J Neurosci Res 58:533–543.

    Article  PubMed  Google Scholar 

  • Schroder W, Seifert G, Huttmann K, Hinterkeuser S, Steinhäuser C (2002).AMPA receptormediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Mol Cell Neurosci 19:447–458.

    Article  PubMed  Google Scholar 

  • Seifert, G, Zhou, M, and Steinhäuser C (1997) Analysis of AMPA receptor properties during postnatal development of mouse hippocampal astrocytes. J Neurophysiol 78:2916–2923.

    PubMed  CAS  Google Scholar 

  • Seifert G, Steinhäuser C (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability. Eur J Neurosci 7:1872–1881.

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1:2–9.

    Article  PubMed  CAS  Google Scholar 

  • Steinhäuser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19:339–345.

    Article  PubMed  Google Scholar 

  • Steinhäuser C, Kressin K, Kuprijanova E, Weber M, Seifert G (1994a) Properties of voltageactivated Na+ and K+ currents in mouse hippocampal glial cells in situ and after acute isolation from tissue slices. Pflugers Arch 428:610–620.

    Article  PubMed  Google Scholar 

  • Steinhäuser C, Jabs R, Kettenmann H (1994b) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 419–435.

    Google Scholar 

  • Tsacopoulos M (2002) Metabolic signaling between neurons and glial cells: a short review. J Physiol Paris 96:283–288.

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Steinhäuser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412.

    Article  PubMed  CAS  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906.

    PubMed  CAS  Google Scholar 

  • Volterra A, Magistretti P, and Haydon P. G. (2003) The tripartite synapse; glia in synaptic transmission. Oxford University Press.

    Google Scholar 

  • Walz W (2002) Chloride/anion channels in glial cell membranes. Glia 40:1–10.

    Article  PubMed  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414.

    Article  PubMed  CAS  Google Scholar 

  • Zhao JW, Du JL, Li JS, Yang XL (2000) Expression of GABA transporters on bullfrog retinal Muller cells. Glia 31:104–117.

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Kimelberg HK (2002) Heterogeneity of swelling activated chloride currents by astrocytes freshly isolated from rat hippocampus Soc Neurosci Abst. 649:10.

    Google Scholar 

  • Zhou M, Kimelberg HK (2001) Freshly isolated hippocampal CA 1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 21:7901–7908.

    PubMed  CAS  Google Scholar 

  • Zhou M, Kimelberg HK (2000) Freshly isolated astrocytes from rat hippocampus show two distinct current patterns and different [K+]o uptake capabilities. J Neurophysiol 84:2746–2757.

    PubMed  CAS  Google Scholar 

  • Zhou, M., School, GP, and Kimelberg, HK (2000) GFAP mRNA positive glia acutely isolated from rat hippocampus predominantly show complex pattern. Brain res Mol Brain Res 76:121–131.

    Article  PubMed  CAS  Google Scholar 

  • Ziak D, Chvatal A, Sykova E (1998) Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol Res 47:365–375.

    PubMed  CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6:43–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold K. Kimelberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, M., Kimelberg, H.K. (2004). Expression and possible functions of glutamate and GABA receptors in glial cells from the hippocampus. In: Hatton, G.I., Parpura, V. (eds) Glial ⇔ Neuronal Signaling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7937-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7937-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1069-4

  • Online ISBN: 978-1-4020-7937-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics