Skip to main content

Structural association of glia with the various compartments of neurons

  • Chapter
Glial ⇔ Neuronal Signaling

Abstract

Neurons are cells that receive, transform and propagate information. For this purpose, they are endowed with a variety of processes or other cellular compartments, dedicated to one or more of these tasks. Generally, neurons are polarized in that one pole is optimized to receive information, and the other to transmit it to targets such as other neurons, muscles, glands, or to the circulating blood. The receptor pole may consist of a sensory process, which probably has been present from the most primitive origin of the neurons (Hanström, 1928; Lenz, 1968; Kanno, 1989; Lacalli, 1990). The sensory apparatus usually involves a sensory organelle, often consisting of one or more modified cilia which are sensitive to a distinct ‘adequate’ type of stimulus (an exception may be multimodal ‘free nerve endings’ of nociceptors). In phylogenetically higher animals, most neurons are no longer capable of direct sensory reception; rather, they receive information from specialized sensory cells, and/or from other neurons. In these cases, the sensory process has been replaced by a dendritic tree, which receives information via synaptic contacts. That is, dendrites are modified sensory processes adapted to the ‘measurement’ of neurotransmitter molecules. Some vertebrate neurons still possess both a sensory process and dendrites (Vigh-Teichmann and Vigh, 1974) (Fig. 3.1). The effector pole usually consists of an axon, and its main feature is the presynaptic terminal, capable of transmitting signals (usually, in the form of secreted neurotransmitter molecules) to other cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMPA:

α amino-3-hydroxy-5-methyl-4-isoxazole propionate

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DRG:

Dorsal root ganglion

GABA:

β-aminobutyric acid

GluR:

Glutamate receptors

IPL:

Inner plexiform layer

LC:

Landolt’s club

LTP:

Long term potentiation

NO:

Nitric oxide

PAPs:

Peripheral astroglial processes

PGPs:

Peripheral glial processes

PNS:

Peripheral nervous system

PRC:

Photoreceptor cells

RIS:

Rod inner segments

ROS:

Rod outer segments

SNARE:

Soluble N-ethyl maleimide-sensitive factor attachment protein receptor

References

  • Abe K, Saito H (2000) L-glutamate suppresses amyloid beta-protein-induce stellation of cultured rat cortical astrocytes. J Neurochem 74:280–286.

    Article  PubMed  CAS  Google Scholar 

  • Adams J, Jones DG (1982) Synaptic remodelling and astrocytic hypertrophy in rat cerebral cortex from early to late adulthood. Neurobiol Aging 3:179–186.

    Article  PubMed  CAS  Google Scholar 

  • Allen DT, Kiernan JA (1994) Permeation of proteins from blood into peripheral nerves and ganglia. Neuroscience 59:755–764.

    Article  PubMed  CAS  Google Scholar 

  • Althaus HH, Schwartz P, Klöppner S, Schröter J, Neuhoff V (1990) Protein kinases A and C are involved in oligodendroglial process formation. In: Cellular and Molecular Biology of Myelination. NATO ASI Series. (Jeserich G, Althaus HH, Waehneldt TV, eds.), pp 247–253. Berlin, Springer-Verlag.

    Chapter  Google Scholar 

  • Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE-protein dependent glutamate release from astrocytes. J Neurosci 20:666–673.

    PubMed  CAS  Google Scholar 

  • Berger UV, Hediger MA (2000) Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J Comp Neurol 421:385–399.

    Article  PubMed  CAS  Google Scholar 

  • Berman ER (1969) Mucopolysaccharides (glycosaminoglycans) of the retina: identification, distribution and possible biological role. Mod Probl Ophthalmol 8:5–31.

    Google Scholar 

  • Berthold CH, Carlstedt T (1977a) Observations on the morphology of the transition between the peripheral and the central nervous system in the cat. II. General organozation of the transitional region in S1 dorsal rootlets. Acta Physiol Scan (Suppl) 446:23–42.

    CAS  Google Scholar 

  • Berthold CH, Carlstedt T (1977b) Observations on the morphology of the transition between the peripheral and the central nervous system in the cat. III. Myelinated fibres in S1 dorsal rootlets. Acta Physiol Scand (Suppl) 446:43–60.

    CAS  Google Scholar 

  • Bevan S, Chiu SY, Gray PTA, Ritchie JM (1985) The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc R Soc Lond. B 225:299–313.

    CAS  Google Scholar 

  • Bowe CM, Kocsis JD, Waxman SG (1985) Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation. Proc R Soc Lond, B 224:355–366.

    CAS  Google Scholar 

  • Brauer K, Werner L, Leibnitz L (1982) Perineuronal nets of glia. J Hirnforsch. 23: 701–708.

    PubMed  CAS  Google Scholar 

  • Breipohl W, Laugwitz HJ, Bornfeld N (1974) Topological relations between the dendrites of olfactory sensory cells and sustentacular cells in different vertebrates. An ultrastructural study. J Anat 117:89–94

    PubMed  CAS  Google Scholar 

  • Brückner G, Grosche J (2001) Perineuronal nets show intrinsic patterns of extracellular matrix differentiation in organotypic slice cultures. Exp Brain Res 137: 83–93.

    Article  PubMed  Google Scholar 

  • Brückner G, Brauer K, Härtig W, Wolff JR, Rickmann MJ, Derouiche A, Delpech B, Girard N, Oertel WH, Reichenbach A (1993) Perineuronal nets provide a polyanionic, gliaassociated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8:183–200.

    Article  PubMed  Google Scholar 

  • Brückner G, Bringmann A, Köppe G, Härtig W, Brauer K (1996a) In vivo and in vitro labelling of perineuronal nets in rat brain. Brain Res. 720:84–92.

    Article  PubMed  Google Scholar 

  • Brückner G, Härtig W, Kacza J, Seeger J, Welt K, Brauer K (1996b) Extracellular matrix organization in various regions of rat brain gray matter. J Neurocytol. 25: 333–346.

    Article  PubMed  Google Scholar 

  • Butt AM, Duncan A, Berry M (1994) Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. J Neurocytol 23: 486–499.

    Article  PubMed  CAS  Google Scholar 

  • Carlson SD, Hilgers SL, Juang J-L (1997) First developmental signs of the scolopale (glial) cell and neuron comprising the chordotonal organ in the Drosophila embryo. Glia 19:269–274.

    Article  PubMed  CAS  Google Scholar 

  • Carlson SS, Hockfield S (1996) Central nervous system. In: Comper WD (ed) Extracellular Matrix. Volume 1, Tissue Function. Harwood Academic Publishers, Amsterdam, pp. 1–23.

    Google Scholar 

  • Carlstedt T (1977) Observations on the morphology of the transition between the peripheral and the central nervous system in the cat. IV. Unmyelinated fibers in S1 dorsal rootlets. Acta Physiol Scand (Suppl) 446:61–71.

    CAS  Google Scholar 

  • Castonguay A, Levésque S, Robitaille R (2001) Glial cells as active partners in synaptic functions. Prog Brain Res 132:227–240.

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1984) The molecular basis of neuronal excitability. Science 223:653–661.

    Article  PubMed  CAS  Google Scholar 

  • Celio MR, Blümcke I (1994) Perineuronal nets — a specialized form of extracellular matrix in the adult nervous system. Brain Res Rev 19: 128–145.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V, Palay SL (1972) The form of velate astrocytes in the cerebellar cortex of monkey and rat: high-voltage electron microscopy of rapid-Golgi preparations. Z Anat Entw-Gesch 138:1–19.

    Article  CAS  Google Scholar 

  • Chao TI, Skatchkov SN, Eberhardt W, Reichenbach A (1994) Na+ channels of Müller (glial) cells isolated from retinae of various mammalian species including man. Glia 10:173–185.

    Article  PubMed  CAS  Google Scholar 

  • Chao TI, Rickmann M, Wolff JR (2002) The synapse-astrocyte boundary: anatomical basis for an integrative role of glia in synaptic transmission. In: The Tripartite Synapses: Glia in Synaptic Transmission (Volterra A, Magistretti P, Haydon P, eds), pp. 3–23. Oxford: Oxford UP.

    Google Scholar 

  • Coggeshall RE (1967) A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol 30:1263–1287.

    PubMed  CAS  Google Scholar 

  • Colbert CM, Pan E (2002) Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nature Neurosci 5:533–538.

    Article  PubMed  CAS  Google Scholar 

  • Colombo J, Parkins CW (1987) A model of electrical excitation of the mammalian auditorynerve neuron. Hear Res 31:287–311.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell A, Thomas PG, Smith SJ (1990) The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes. Glia 3:322–334.

    Article  PubMed  CAS  Google Scholar 

  • Cooper MH, Beal JA (1977) Myelinated granule cell bodies in the cerebellum of the monkey (Saimiri sciurus). Anat Rec 187:249–256.

    Article  PubMed  CAS  Google Scholar 

  • Couteaux R (1958) Morphological and cytochemical observations on the post-synaptic membrane and motor end-plates and ganglionic synapses. Exp Cell Res Suppl. 5.

    Google Scholar 

  • Crowcroft PJ, Szurszewski JH (1971) A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J Physiol (Lond) 219:421–441.

    CAS  Google Scholar 

  • D’Amelio FE, Gibbs MA, Mehler WR, Philpott DE, Savage W (1986) Axoglial contacts in the area postrema of the cat: an ultrastructural study. Anat Rec 215: 407–412.

    Article  PubMed  Google Scholar 

  • Denk W, Sugimori, M, Llinas R (1995) Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc Natl Acad Sci USA 92:8279–8282.

    Article  PubMed  CAS  Google Scholar 

  • Derouiche A (1997) Coupling of Glutamate Uptake and Degradation in Transmitter Clearance: Anatomical Evidence. In: Neurotransmitter Release and Uptake (Pögün S, ed), pp 263–282. NATO ASI Series: Vol H: Cell Biology Series.

    Chapter  Google Scholar 

  • Derouiche A, Frotscher M (1991) Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation. Brain Res 552: 346–350.

    Article  PubMed  CAS  Google Scholar 

  • Derouiche A, Frotscher M (2001) Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 36:330–341.

    Article  PubMed  CAS  Google Scholar 

  • Derouiche A, Rauen T (1995) Coincidence of glutamate-aspartate-transporter- (GLAST) and glutamine synthetase- (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143.

    Article  PubMed  CAS  Google Scholar 

  • Derouiche A, Härtig W, Brauer K, Brückner G (1996) Spatial relationship of lectin-labelled extracellular matrix and glutamine synthetase-immunoreactive astrocytes in rat cortical forebrain regions. J Anat 189:363–372.

    PubMed  Google Scholar 

  • Derouiche A, Anlauf E, Aumann G, Mühlstädt B, Lavialle M (2002) Anatomical aspects of glia-synapse interaction: the perisynaptic glial sheath consists of a specialized astrocyte compartment. J Physiol (Paris) 96:177–182.

    Article  CAS  Google Scholar 

  • Doucette JR (1984) The glial cells in the nerve fiber layer of the rat olfactory bulb. Anat Rec 210:385–391.

    Article  PubMed  CAS  Google Scholar 

  • Famiglietti EV, Kolb H (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res 84:293–300.

    Article  PubMed  Google Scholar 

  • ffrench-Constant C, Miller RH, Kruse J, Schachner M, Raff MC (1986) Molecular specialization of astrocytic processes at nodes of Ranvier in rat optic nerve. J Cell Biol 102:844–852.

    Article  PubMed  CAS  Google Scholar 

  • Flood PR (1966) A peculiar mode of muscular innervation in Amphioxus. Light and electron microscopic studies of the so-called ventral roots. J Comp Neurol 126: 181–218.

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Tanaka K, Tokunaga J (1986) Zellen und Gewebe — Ein REM Atlas für Mediziner und Biologen, Gustav Fischer Verlag Stuttgart — New York (p 217).

    Google Scholar 

  • Gabella G (1995) The structural relations between nerve fibers and muscle cells in the urinary bladder of the rat. J Neurocytol 24:159–187.

    Article  PubMed  CAS  Google Scholar 

  • Gho M, Bellaiche Y, Schweisguth F (1999) Revisiting the Drosophila microchaete lineage: A novel intrinsically asymmetric cell division generates a glial cell. Development 126:3573–3564.

    PubMed  CAS  Google Scholar 

  • Gnatzy W, Schmidt K (1971) Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus bimaculatus Deg. (Saltatoria, Gryllidae). 1. Faden- und Keulenhaare. Z Zellforsch 122:190–209.

    Article  PubMed  CAS  Google Scholar 

  • Gobel S (1978) Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleus caudatus). J Comp Neurol 1 80:375–394.

    Article  Google Scholar 

  • Grab D, Reisert I, Pilgrim C (1983). Volumendichte und spezifische Oberflächen neuronaler und gliöser Gewebselemente in verschiedenen Regionen des Rattenhirns. Verh Anat Ges 77:255–256.

    Google Scholar 

  • Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68:138–149.

    Article  PubMed  CAS  Google Scholar 

  • Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nature Neurosci 2:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Güldner FH, Wolff JR (1977) Perisynaptic reactions of astroglia in the visual cortex after optic nerve stimulation. Exp Brain Res Suppl. I:343–347.

    Google Scholar 

  • Gutnick MJ, Connors BW, Ransom BR (1981) Dye coupling between glial cells in the guinea pig neocortical slice. Brain Res 213:486–492.

    Article  PubMed  CAS  Google Scholar 

  • Hageman GS, Johnson LV (1991) Structure, composition and function of the retinal interphotoreceptor matrix. In: Progr Retinal Res Vol. 10, (Osborne N and Chader J, eds) , pp 207–249. Oxford, Pergamon Press.

    Google Scholar 

  • Hanani M, Reichenbach A (1994) Morphology of HRP-injected glial cells in the myenteric plexus of the guinea-pig. Cell Tissue Res 278:153–160.

    Article  PubMed  CAS  Google Scholar 

  • Hanani M, Huang TY, Cherkas PS, Ledda M, Pannese E (2002) Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114:279–283.

    Article  PubMed  CAS  Google Scholar 

  • Hanani M, Lin Z, Louzon V, Brenner T, Boneh A (1997) Phorbol esters alter the morphology of cultured myenteric glia via a PKC-independent mechanism. Neuroscience Lett 233:61–64.

    Article  CAS  Google Scholar 

  • Hanani, M, Maudlej N, Härtig W (1999) Morphology and intercellular communication in glial cells of the intrinsic ganglia of the guinea-pig urinary bladder. J Auton Nervous System 76:62–67.

    Article  CAS  Google Scholar 

  • Hanani M, Zamir O, Baluk P (1989) Glial cells in the guinea pig myenteric plexus are dye coupled. Brain Res 497:245–249.

    Article  PubMed  CAS  Google Scholar 

  • Hanke S, Reichenbach A (1987) Quantitative-morphometric aspects of Bergmann glial (Golgi epithelial) cell development in rats. A Golgi study. Anat Embryol 177:183–188.

    Article  CAS  Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Berlin, Springer-Verlag.

    Google Scholar 

  • Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M, Reichenbach A, Brückner G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1 b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842: 15–29.

    Article  PubMed  Google Scholar 

  • Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739–744.

    Article  PubMed  Google Scholar 

  • Hawrylak N., Fleming JC, Salm AK (1998) Dehydration and rehydration selectively and reversibly alter glial fibrillary acidic protein immunoreactivity in the rat supraoptic nucleus and subjacent glia limitans. Glia, 22: 260–271.

    Article  PubMed  CAS  Google Scholar 

  • Heuser JE and Doggenweiler CF (1966). The fine structural organization of nerve fibers, sheaths, and glial cells in the prawn, Palaemonetes vulgaris. J Cell Biol 30: 381–403.

    Article  PubMed  CAS  Google Scholar 

  • Heuser JE, Reese TS (1977) The structure of the synapse. In Handbook of Physiology; The Nervous System. Vol. I, Part I (Kandel ER, ed), pp 261–294. Bethesda, Maryland: American Physiological Society.

    Google Scholar 

  • Hildebrand C, Waxman SG (1983) Regional node-like specializations in non-myelinated axons of rat retinal nerve fiber layer. Brain Res 58:23–32.

    Article  Google Scholar 

  • Hildebrand C, Waxman SG (1984) Postnatal differentiation of rat optic nerve fibers: electron microscopic observations of nodes of Ranvier and axoglial relations. J Comp Neurol 224:25–37.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand C, Remahl S, Persson H, Bjartmar C (1993) Myelinated nerve fibres in the CNS. Progr Neurobiol 40: 319–384.

    Article  CAS  Google Scholar 

  • Hoheisel U, Mense S (1987) Observations on the morphology of axons and somata of slowly conducting dorsal root ganglion cells in the cat. Brain Res 423:269–278.

    Article  PubMed  CAS  Google Scholar 

  • Holland LZ (1996) Muscle development in Amphioxus: morphology, biochemistry, and molecular biology. Israel J Zool 42:S-235-S-246.

    Google Scholar 

  • Holländer H, Makarov F, Dreher Z, van Driel D, Chan-Ling T, Stone J (1991) Structure of macroglia of the retina: sharing and division of labour between astrocytes and Müller cells. J Comp Neurol 313: 587–603.

    Article  PubMed  Google Scholar 

  • Hortega P, Del Rio (1956) Variedas morfológicas de oligodendrocitos. Arch Histol (B Aires) 6:239–291.

    Google Scholar 

  • Hoyle G (1986) Glial cells of an insect ganglion. J Comp Neurol 246:85–103.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G, Williams M, Phillips C (1986) Functional morphology of insect neuronal cell-surface/glial contacts: the trophospongium. J Comp Neurol 246:113–128.

    Article  PubMed  CAS  Google Scholar 

  • Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, Miwa A, Takayasu Y, Saito I, Tsuzuki K, Ozawa S (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292 :926–929.

    Article  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci 1: 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Kanno T (1989) The physiology and cell biology of paraneurons. Arch Histol Cytol 52, Suppl.:9–12.

    Article  PubMed  Google Scholar 

  • Katz B (1966) Nerve, Muscle, and Synapse. New York, McGraw-Hill Book Co.

    Google Scholar 

  • Keil TA (1997) Comparative morphogenesis of sensilla: A review. Int J Insect Morphol Embryol 26:151–160.

    Article  Google Scholar 

  • Kettenmann H, von Blankenfeld G, Trotter J (1991) Physiological properties of oligodendrocytes during development. Ann NY Acad Sci 633:64–77.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, Narumi S, Bourke RS (1978) Enzymatic and morphological properties of rat brain astrocytic cultures, and enzymatic development in vivo. Brain Res 153:55–77.

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Löffelholz K (1996) Cholinergic Mechanisms: from Molecular Biology to Clinical Significance. Progr Brain Res 109:1–373.

    Article  Google Scholar 

  • Klintsova A, Levy WB, Desmond NL (1995) Astrocytic volume fluctuates in the hippocampal CA 1 region across the estrous cycle. Brain Res 690:269–274.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis JD, Bowe CM, Waxman SG (1986) Different effects of 4-aminopyridine on sensory and motor fibers: pathogenesis of paresthesias. Neurology 36:117–120.

    Article  PubMed  CAS  Google Scholar 

  • Knowles F, Anand Kumar TC (1969) Structural changes, related to reproduction, in the hypothalamus and in the pars tuberalis of the rhesus monkey. Phil Trans Roy Soc Lond. (Biol.) B, 256:357–375.

    Article  Google Scholar 

  • Lacalli TC (1990) Structure and organization of the nervous system in the actinotroch larva of Phoronis vancouverensis. Phil Trans R Soc Lond B 327:655–685.

    Article  Google Scholar 

  • Lein PJ, Beck HN, Chandrasekaran V, Gallagher PJ, Chen H-L, Lin Y, Guo X, Kaplan PL, Tiedge H, Higgins D (2002) Glia induce dendritic growth in cultured sympathetic neurons by modulating the balance between bone morphogenetic proteins (BMPs) and BMP antagonists. J Neurosci 22:10377–10387.

    PubMed  CAS  Google Scholar 

  • Lenz TL (1968) Primitive Nervous Systems. pp. 1–148, New Haven, Yale University Press.

    Google Scholar 

  • Leonhardt H, Backhus-Roth A (1969) Synapsenartige Kontakte zwischen intraventrikulären Axonendigungen und freien Oberflächen von Ependymzellen des Kaninchengehirns. Z Zellforsch Mikrosk Anat 97:369–376.

    Article  PubMed  CAS  Google Scholar 

  • Lichtensteiger W, Richards G, Kopp HG (1978) Changes in the distribution of non-neuronal elements in rat median eminence and in anterior pituitary hormone secretion after activation of tuberoinfundibular dopamine neurones by brain stimulation or nicotine. Brain Res 157:73–88.

    Article  PubMed  CAS  Google Scholar 

  • Lichtensteiger W, Richards G, Kopp HG (1978) Changes in the distribution of non-neuronal elements in rat median eminence and in anterior pituitary hormone secretion after activation of tuberoinfundibular dopamine neurones by brain stimulation or nicotine. Brain Res 157:73–88.

    Google Scholar 

  • Llinas R (1975) Electroresponsive properties of dendrites in central neurons. Adv Neurol 12:1–13.

    PubMed  CAS  Google Scholar 

  • Llinas R, Nicholson C, Freeman JA, Hillman DE (1969) Dendritic spikes versus cable properties. Science 163: 97.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto E, Rosenbluth J (1986) Structure of the satellite cell sheath around the cell body, axon hillock, and initial segment of frog dorsal root ganglion cells. Anat Rec 215:182–191.

    Article  PubMed  CAS  Google Scholar 

  • Mauch DH, Nägler K, Schumacher S, Göritz C, Müller E-C, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294: 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1990) Structure-function relationships in identified afferent neurones. Anat Embryol 181:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Messlinger K (1996) Functional morphology of nociceptive and other fine sensory endings (free nerve endings) in different tissues. In: Progress in Brain Research Vol. 113 (Kumazawa T, Kruger L, Mizumura K, eds), pp 273–298. Amsterdam, Elsevier.

    Google Scholar 

  • Missler M, Wolff A, Merker H-J, Wolff JR (1993) Pre- and postnatal development of the primary visual cortex of the common marmoset. II. Formation, remodelling, and elimination of synapses as overlapping processes. J Comp Neurol 333:53–67.

    Article  PubMed  CAS  Google Scholar 

  • Mobley PL, Scott SL, Cruz EG (1986) Protein kinase C in astrocytes; a determinant of cell morphology. Brain Res 389:366–369.

    Article  Google Scholar 

  • Müller CM, Best J (1989) Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342:427–430.

    Article  PubMed  Google Scholar 

  • Müller-Mohnsen H, Tippe A, Hillenkamp F, Unsöld E (1975) About the importance of paranodal structures of the Ranvier node for the impulse regeneration. Z Naturforsch 30:271–277.

    Google Scholar 

  • Munger BL, Ide C (1988) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51:1–34.

    Article  PubMed  CAS  Google Scholar 

  • Narlieva N (1988) Multilamellar glial envelopes of synapses in the pontine nuclei of the cat. Acta anat 131:227–230.

    Article  PubMed  CAS  Google Scholar 

  • Newman EA, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19:307–312.

    Article  PubMed  CAS  Google Scholar 

  • Okado N, Yokota N (1982) Axoglial synaptoid contacts in the neural lobe of the human fetus. Anat Rec 202:117–124.

    Article  PubMed  CAS  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292: 923–926.

    Article  PubMed  CAS  Google Scholar 

  • Osborne MP (1970) Structure and function of neuromuscular junctions and stretch receptors. Symp R Entomol Soc London 5:77–100.

    Google Scholar 

  • Palacios-Prü EL, Mendoza RU, Palacios L (1983) In vitro and in situ formation of neuronalglial junctions. Exp Neurol 182:541–569.

    Article  Google Scholar 

  • Pannese E (1981) The satellite cells of the sensory ganglia. Adv Anat Embryol Cell Biology 65:1–111.

    Article  CAS  Google Scholar 

  • Pannese E (2002) Perikaryal surface specializations of neurons in sensory ganglia. Int Rev Cytol 220:1–34.

    Article  PubMed  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate mediated astrocyte neuron signalling. Nature 369:744–747.

    Article  PubMed  CAS  Google Scholar 

  • Paspalas CD, Papadopoulos GC (1998) Ultrastructural evidence for combined action of noradrenaline and vasoactive intestinal polypeptide upon neurons, astrocytes, and blood vessels of the rat cerebral cortex. Brain Res Bull 45:247–259.

    Article  PubMed  CAS  Google Scholar 

  • Pfrieger FW, Barres BA (1996) New views on synapse-glia interactions. Curr Opin Neurobiol 6:615–621.

    Article  PubMed  CAS  Google Scholar 

  • Pinching AJ (1971) Myelinated dendritic segments in the monkey olfactory bulb. Brain Res 29:133–138.

    Article  PubMed  CAS  Google Scholar 

  • Pomeroy SL, Purves D (1988) Neuron/glia relationships observed over intervals of several months in living mice. J Cell Biol 107:1167–1175.

    Article  PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1995) GFAP-positive hippocampal astrocytes respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 13:101–112.

    Article  PubMed  CAS  Google Scholar 

  • Purves D (1989) Assessing some dynamic properties of the living nervous system. Quart J Exp Physiol 74:1089–1105.

    CAS  Google Scholar 

  • Rafols JA (1986) Ependymal tanycytes of the ventricular system in vertebrates. In: Astrocytes. Vol. 1. Development, Morphology and Regional Specification of Astrocytes. (Fedoroff S, Vernadakis A, eds), pp. 131–148, London, Academic Press.

    Google Scholar 

  • Raine CS (1984) On the association between perinodal astrocytic processes and the node of Ranvier in the C.N.S. J Neurocytol 13:21–27.

    Article  PubMed  CAS  Google Scholar 

  • Rambourg A (1971) Morphological and histochemical aspects of glycoproetins at the surface of animal cells. Int Rev Cytol 31:57–114.

    Article  PubMed  CAS  Google Scholar 

  • Ramóny Cajal S (1892) The Structure of the Retina. (Engl. transl., 1972), Springfield, IL, Thomas.

    Google Scholar 

  • Reichelt W, Dettmer D, Brückner G, Brust P, Eberhardt W, Reichenbach A (1989) Potassium as a signal for both proliferation and differentiation of rabbit retinal (Müller) glia growing in cell culture. Cell Signalling 1:187–194.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach A (1989) Attempt to classify glial cells by means of their process specialization using the rabbit retinal Müller cell as an example of cytotopographic specialization of glial cells. Glia 2:250–259.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach A, Reichelt W (1986) Postnatal development of radial glial (Müller) cells of the rabbit retina. Neurosci Lett 71:125–130.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach A, Schippel K, Schümann R, Hagen E (1988a) Ultrastructure of rabbit nerve fibre layer — neuro-glial relationships, myelination, and nerve fiber spectrum. J Hirnforsch 29:481–491.

    PubMed  CAS  Google Scholar 

  • Reichenbach A, Hagen E, Schippel K, Eberhardt W (1988b) Quantitative electron microscopy of rabbit Müller (glial) cells in dependence of retinal topography. Z Mikroskop-Anat Forsch 102:721–755.

    CAS  Google Scholar 

  • Reichenbach A, Schneider H, Leibnitz L, Reichelt W, Schaaf P, Schümann R (1989) The structure of rabbit retinal Müller (glial) cells is adapted to the surrounding retinal layers. Anat Embryol 180:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach A, Siegel A, Senitz D, Smith TG jr (1992) A comparative fractal analysis of various mammalian astroglial cell types. Neuroimage 1:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach A, Stolzenburg J-U, Eberhardt W, Chao TI, Dettmer D, Hertz L (1993) What do retinal Müller (glial) cells do for their neuronal “small silblings”?. J Chem Neuroanat 6:201–213.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach A, Siegel A, Rickmann M, Wolff JR, Noone D, Robinson SR (1995a) Distribution of Bergmann glial somata and processes: implications for function. J Brain Res 36:509–517.

    CAS  Google Scholar 

  • Reichenbach A, Frömter C, Engelmann R, Wolburg H, Kasper M, Schnitzer J (1995b) Müller glial cells of the tree shrew retina. J Comp Neurol 360:257–270.

    Article  PubMed  CAS  Google Scholar 

  • Remahl S, Hildebrand C (1990a) Relation between axons and oligodendroglial cells during initial myelination. I. The glial unit. J Neurocytol 19:313–328.

    Article  PubMed  CAS  Google Scholar 

  • Remahl S, Hildebrand C (1990b) Relation between axons and oligodendroglial cells during initial myelination. II. The individual axon. J Neurocytol 19:883–898.

    Article  PubMed  CAS  Google Scholar 

  • Robinson SR, Hampson ECGM, Munro MN, Vaney DI (1993) Unidirectional coupling of gap junctions between neuroglia. Science 262:1072–1074.

    Article  PubMed  CAS  Google Scholar 

  • Rohlmann A, Laskawi R, Hofer A, Dermietzel R, Wolff JR (1994) Astrocytes as rapid sensors of peripheral axotomy in the facial nucleus of rats. Neuro Report 5: 409–412.

    CAS  Google Scholar 

  • Romand MR, Romand R (1987) The ultrastructure of spiral ganglion cells in the mouse. Acta Otolaryngol (Stockh) 104:29–39.

    Article  CAS  Google Scholar 

  • Rouach N, Glowinski J, Giaume C (2001) Activity-dependent neuronal control of gapjunctional communication in astrocytes. J Cell Biol 149:1513–1526.

    Article  Google Scholar 

  • Runquist M, Alonso G (2003) Gabaergic signaling mediates the morphological organization of astrocytes in the adult rat forebrain. Glia 41:137–151.

    Article  PubMed  Google Scholar 

  • Safronov BV (1999) Spatial distribution of Na+ and K+ channels in spinal dorsal horn neurones: role of the soma, axon and dendrites in spike generation. Prog Neurobiol 59:217–241.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie RL, Carlson SD, Chi C (1984) The glial cells of insects. In: Insect Ultrastructure. (King RC, Akai R, eds), pp. 435–475, Plenum.

    Chapter  Google Scholar 

  • Sarantis M, Mobbs P (1992) The spatial relationship between Müller cell processes and the photoreceptor output synapse. Brain Res 584:299–304.

    Article  PubMed  CAS  Google Scholar 

  • Sastry BR, Goh JW, May PBY, Chirwa SS (1988) The involvement of nonspiking cells in long-term potentiation of synaptic transmission in the hippocampus. Can J Physiol Pharmacol 66:841–844.

    Article  PubMed  CAS  Google Scholar 

  • Scharrer B, Weitzman M (1980) Die Glia der wirbellosen Tiere. In: Neuroglia I (Oksche A, ed), pp. 157–175, Berlin, Springer-Verlag.

    Chapter  Google Scholar 

  • Schmidt-Ott KM, Xu AD, Tuschick S, Liefeldt L, Kresse W, Verkhratsky A, Kettenmann H, Paul M (2001) Hypoxia reverses dibutyryl-cAMP-induced stellation of cultured astrocytes via activation of the endothelin system. FASEB J 15:1227–1229.

    PubMed  CAS  Google Scholar 

  • Schon F, Kelly JS (1974) Autoradiographic localization of (3H)GABA and (3H)Glutamate over satellite glial cells. Brain Res 66:275–288.

    Article  CAS  Google Scholar 

  • Shrager P, Chiu SY, Ritchie JM (1985) Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc Natl Acad Sci USA 82:948–952.

    Article  PubMed  CAS  Google Scholar 

  • Senitz D, Reichenbach A, Smith TG jr (1995) Surface complexity of human neocortical astrocytic cells: changes with development, aging, and dementia. J Brain Res 36:531–537.

    CAS  Google Scholar 

  • Sirevaag AM, Greenough WT (1991) Plasticity of GFAP-immunoreactive astrocyte size and number in visual cortex of rats reared in complex environments. Brain Res 540:273–278.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg RH (1985) Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 60:327–346.

    Article  PubMed  CAS  Google Scholar 

  • Stewart MG, Bourne RC, Gabbott PLA (1986) Decreased levels of an astrocytic marker, glial fibrillary acidic protein, in the visual cortex of dark-reared rats: measurement by enzymelinked immunosorbent assay. Neurosci Lett 63:147–152.

    Article  PubMed  CAS  Google Scholar 

  • Stone J, Makarov F, Holländer H (1995) The glial ensheathment of the soma and axon hillock of retinal ganglion cells. Vis Neurosci 12:273–279.

    Article  PubMed  CAS  Google Scholar 

  • Stuart G, Schiller J, Sakmann B (1997a) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505:617–632.

    Article  PubMed  CAS  Google Scholar 

  • Stuart G, Spruston N, Sakmann B, Häusser M (1997b) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neuro Sci 20:125–131.

    Article  CAS  Google Scholar 

  • Sugiura Y, Lee CL, Perl ER (1986) Central projections of identified, unmyelinated © afferent fibers innervating mammalian skin. Science 234:358–361.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Misson J-P, Caviness jr VS (1990) Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis. J Comp Neurol 302:15–28.

    Article  PubMed  CAS  Google Scholar 

  • Ten Tusscher MP, Klooster J, Vrensen GF (1989) Satellite cells as blood-ganglion cell barrier in autonomic ganglia. Brain Res 490:95–102.

    Article  PubMed  Google Scholar 

  • Thippeswamy T, Morris R. (2002) The roles of nitric oxide in dorsal root ganglion neurons. Ann NY Acad Sci 962:103–110.

    Article  PubMed  CAS  Google Scholar 

  • Treherne JE, Schofield PK, Lane NJ (1982) Physiological and ultrastructural evidence for an extracellular anion matrix in the central nervous system of an insect (Periplaneta americana). Brain Res 16:255–267.

    Article  Google Scholar 

  • Ushiki T, Ide C (1987) Scanning electron microscopic studies of the myelinated nerve fibres of the mouse sciatic nerve with special reference to the Schwann cell cytoplasmic network external to the myelin sheath. J Neurocytol 16:737–747.

    Article  PubMed  CAS  Google Scholar 

  • Valverde F, Lopez-Mascaraque L (1991) Neuroglial arrangements in the olfactory glomeruli of the hedgehog. J Comp Neurol 307: 658–674.

    Article  PubMed  CAS  Google Scholar 

  • Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or neurobiotin. Neurosci Lett 125:187–190.

    Article  PubMed  CAS  Google Scholar 

  • Vigh-Teichmann I, Vigh B (1974) The infundibular cerebrospinal fluid contacting neurons. Adv Anat Embryol Cell Biol 50:1–91.

    PubMed  CAS  Google Scholar 

  • Volterra A, Magistretti P, Haydon P (eds) The Tripartite Synapses: Glia in Synaptic Transmission. Oxford University Press. no. 1–272. 2002

    Google Scholar 

  • Waxman SG (1983) The astrocyte as a component of the node of Ranvier. Trends Neurosci 9:250–253.

    Article  Google Scholar 

  • Waxman SG, Black JA, Foster RE (1983) Ontogenesis of the axolemma and axoglial relationships in myelinated fibers: electrophysiological and freeze-fracture correlates of membrane plasticity. Int Rev Neurobiol 24:433–484.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel J, Lammert G, Meyer U, Krug M (1991) The influence of long-term potentiation on the spatial relationship between astrocyte processes and potentiated synapses in the dentate gyrus neuropil of rat brain. Brain Res 560:122–131.

    Article  PubMed  CAS  Google Scholar 

  • Wersäll J (1956) Studies on the structure and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta oto-laryngologia (Stockh) Suppl 126:1–85.

    Google Scholar 

  • Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317.

    PubMed  CAS  Google Scholar 

  • Wittkowski W (1967) Synaptische Strukturen und Elementargranula in der Neurohypophyse des Meerschweinchens. Z Zellforsch 82:434–458.

    Article  PubMed  CAS  Google Scholar 

  • Wittkowski W (1973) Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des tubero-hypophysären Systems der Ratte. Z Zellforsch 139:101–148.

    Article  PubMed  CAS  Google Scholar 

  • Wolff J (1968) The role of astroglia in the brain tissue. Acta Neuropathol Suppl IV:33–39.

    Google Scholar 

  • Wolff JR, Laskawi R, Spatz WB, Missler M (1995) Structural dynamics of synapses and synaptic components. Behav Brain Res 66:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Xu-Friedmann MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto Purkinje cells. J Neurosci 21:6666–6672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichenbach, A., Derouiche, A., Grosche, J., Hanani, M. (2004). Structural association of glia with the various compartments of neurons. In: Hatton, G.I., Parpura, V. (eds) Glial ⇔ Neuronal Signaling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7937-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7937-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1069-4

  • Online ISBN: 978-1-4020-7937-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics