Skip to main content

Calcium signaling in glia

  • Chapter
Glial ⇔ Neuronal Signaling

Abstract

The expression of voltage-gated Ca2+ channels on astrocytes in culture has already been shown 20 years ago (MacVicar, 1984). A detailed investigation has recently identified a large variety of subtypes present in cultured cells, both on the protein and mRNA level, namely α1B (N-type), α1c (L-type), α1D (L-type), α1E (R-type), and α1G (T-type), but not α1A (P/Q-type) channels (Latour et al., 2003). The expression of Ca channels in astrocytes in situ is controversial. There was no evidence found for Ca2+ channels in astrocytes in acute slices from the visual cortex or the CA1 hippocampal region of developing rats and the depolarization-induced [Ca2+]i increases in astrocytes was solely attributed to the activation of metabotropic receptors by neurotransmitters, such as glutamate, released by synaptic terminals upon depolarization (Carmignoto et al., 1998). In contrast, freshly isolated astrocytes from 2–6 week old rat hippocampi showed verapamil-sensitive increases in Ca2+ due to depolarization by high K+ supporting the presence of voltage-gated Ca2+ channels (Fraser et al., 1995). For more details on Ca2+ channels see also Chapter 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

trans:

ACPD: (1S,3R)-1-Aminocyclopentane-1,3-dicarboxylic acid

AMPA (R):

α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (receptor)

BAPTA:

1,2-bis-(o-minophenoxy)ethanie-N,N,N’,N’-tetraacetic acid

C5a, C3a:

Complement factor 5a, etc.

[Ca2+]i :

Cytosolic free calcium concentration

CaSK:

Calcium sensing receptor CCL21 Chemokine CCL21

CCR:

Chemokine receptor binding CC type chemokines

CNS:

Central nervous system

CRAC:

Calcium release activated channel

Cx:

Connexins, various gap junction proteins

CXCR:

Chemokine receptor binding CXC type chemokines

ET:

Endothelin

GABA:

γ-amino butyric acid

GABAARs GABAA :

receptors

GluRs:

Glutamate receptors

mGluRs:

Metabotropic glutamate receptors

gp 120 HIV:

envelop glycoprotein 120

IFN:

γ: Interferon gamma

IL:

Interleukin

InsP3(R):

Inositol trisphosphate (receptor)

LPA:

Lysophosphatidic acid

LPS:

Lipopolysaccharide

MIP:

Macrophage inflammatory protein

MRF:

microglial response factor

NE:

Norepinephrine

NMDA(R):

N-methyl-D-aspartate receptors

NO:

Nitric oxide

PAR:

Protease activated receptor

PTX:

Pertussis toxin

TNFα:

Tumor necrosis factor alpha

TTX:

Tetrodotoxin

References

  • Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E (2002) Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22: 9430–9444.

    PubMed  CAS  Google Scholar 

  • Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20: 666–673.

    PubMed  CAS  Google Scholar 

  • Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22: 2443–2450.

    PubMed  CAS  Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A 99: 9840–9845.

    PubMed  CAS  Google Scholar 

  • Belachew S, Malgrange B, Rigo JM, Rogister B, Leprince P, Hans G, Nguyen L, Moonen G (2000) Glycine triggers an intracellular calcium influx in oligodendrocyte progenitor cells which is mediated by the activation of both the ionotropic glycine receptor and Na+-dependent transporters. Eur J Neurosci 12: 1924–1930.

    PubMed  CAS  Google Scholar 

  • Berger T, Schnitzer J, Orkand PM, Kettenmann H (1992) Sodium and Calcium Currents in Glial Cells of the Mouse Corpus Callosum Slice. Eur J Neurosci 4: 1271–1284.

    PubMed  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391: 281–285.

    PubMed  CAS  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4: 702–710.

    PubMed  CAS  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4: 702–710.

    Google Scholar 

  • Biber K, Sauter A, Brouwer N, Copray SC, Boddeke HW (2001) Ischemia-induced neuronal expression of the microglia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC). Glia 34: 121–133.

    PubMed  CAS  Google Scholar 

  • Blankenfeld GG, Verkhratsky AN, Kettenmann H (1992) Ca2+ Channel Expression in the Oligodendrocyte Lineage. Eur J Neurosci 4: 1035–1048.

    Google Scholar 

  • Boddeke EW, Meigel I, Frentzel S, Biber K, Renn LQ, Gebicke-Harter P (1999) Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur J Pharmacol 374: 309–313.

    PubMed  CAS  Google Scholar 

  • Boitier E, Rea R, Duchen MR (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol 145: 795–808.

    PubMed  CAS  Google Scholar 

  • Borges K, Ohlemeyer C, Trotter J, Kettenmann H (1994) AMPA/kainate receptor activation in murine oligodendrocyte precursor cells leads to activation of a cation conductance, calcium influx and blockade of delayed rectifying K+ channels. Neuroscience 63: 135–149.

    PubMed  CAS  Google Scholar 

  • Boucsein C, Kettenmann H, Nolte C (2000) Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 12: 2049–2058.

    PubMed  CAS  Google Scholar 

  • Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17: 2267–2276.

    PubMed  Google Scholar 

  • Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH, Sakmann B (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256: 1566–1570.

    PubMed  CAS  Google Scholar 

  • Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18: 4637–4645.

    PubMed  CAS  Google Scholar 

  • Chattopadhyay N, Ye CP, Yamaguchi T, Kifor O, Vassilev PM, Nishimura R, Brown EM (1998) Extracellular calcium-sensing receptor in rat oligodendrocytes: expression and potential role in regulation of cellular proliferation and an outward K+ channel. Glia 24: 449–458.

    PubMed  CAS  Google Scholar 

  • Codazzi F, Menegon A, Zacchetti D, Ciardo A, Grohovaz F, Meldolesi J (1995) HIV-1 gp 120 glycoprotein induces [Ca2+]i responses not only in type-2 but also type-1 astrocytes and oligodendrocytes of the rat cerebellum. Eur J Neurosci 7: 1333–1341.

    PubMed  CAS  Google Scholar 

  • Cornell Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247: 470–473.

    PubMed  CAS  Google Scholar 

  • Dani JW, Chernjaysky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440.

    PubMed  CAS  Google Scholar 

  • Deng W, Rosenberg PA, Volpe JJ, Jensen FE (2003) Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci U S A 100: 6801–6806.

    PubMed  CAS  Google Scholar 

  • Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hipnocampal slice. J Neurosci 15: 5535–5550.

    PubMed  CAS  Google Scholar 

  • Fam SR, Gallagher CJ, Kalia LV, Salter MW (2003) Differential frequency dependence of P2Y 1- and P2Y2- mediated Ca2+ signaling in astrocytes. J Neurosci 23: 4437–4444.

    PubMed  CAS  Google Scholar 

  • Fatatis A, Russell JT (1992) Spontaneous changes in intracellular calcium concentration in type I astrocytes from rat cerebral cortex in primary culture. Glia 5: 95–104.

    PubMed  CAS  Google Scholar 

  • Ferry S, Traiffort E, Stinnakre J, Ruat M (2000) Developmental and adult expression of rat calcium-sensing receptor transcripts in neurons and oligodendrocytes. Eur J Neurosci 12: 872–884.

    PubMed  CAS  Google Scholar 

  • Franciosi S, Choi HB, Kim SU, McLarnon JG (2002) Interferon-gamma acutely induces calcium influx in human microglia. J Neurosci Res 69: 607–613.

    PubMed  CAS  Google Scholar 

  • Fraser DD, Duffy S, Angelides KJ, Perez-Velazquez JL, Kettenmann H, MacVicar BA (1995) GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes. J Neurosci 15: 2720–2732.

    PubMed  CAS  Google Scholar 

  • Giaume C, Venance L (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24: 50–64.

    PubMed  CAS  Google Scholar 

  • Gilbert P, Kettenmann H, Schachner M (1984) gamma-Aminobutyric acid directly depolarizes cultured oligodendrocytes. J Neurosci 4: 561–569.

    PubMed  CAS  Google Scholar 

  • Goghari V, Franciosi S, Kim SU, Lee YB, McLarnon JG (2000) Acute application of interleukin-1 beta induces Ca(2+) responses in human microglia. Neurosci Lett 281: 83–86.

    PubMed  CAS  Google Scholar 

  • Golovina VA, Bambrick LL, Yarowsky PJ, Krueger BK, Blaustein MP (1996) Modulation of two functionally distinct Ca2+ stores in astrocytes: role of the plasmalemmal Na/Ca exchanger. Glia 16: 296–305.

    PubMed  CAS  Google Scholar 

  • Golovina VA, Blaustein MP (2000) Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca(2+) stores in astrocytes. Glia 31: 15–28.

    PubMed  CAS  Google Scholar 

  • Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68: 138–149.

    PubMed  CAS  Google Scholar 

  • Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2: 139–143.

    PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MVL, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19: 520–528.

    PubMed  CAS  Google Scholar 

  • Haak LL, Grimaldi M, Smaili SS, Russell JT (2002) Mitochondria regulate Ca2+ wave initiation and inositol trisphosphate signal transduction in oligodendrocyte progenitors. J Neurochem 80: 405–415.

    PubMed  CAS  Google Scholar 

  • Haak LL, Song LS, Molinski TF, Pessah IN, Cheng H, Russell JT (2001) Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. 21: 3860–3870.

    CAS  Google Scholar 

  • Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75: 257–261.

    PubMed  CAS  Google Scholar 

  • Hahn J, Jung W, Kim N, Uhm DY, Chung S (2000) Characterization and regulation of rat microglial Ca(2+) release-activated Ca(2+) (CRAC) channel by protein kinases. Glia 31: 118–124.

    PubMed  CAS  Google Scholar 

  • Hegg CC, Hu S, Peterson PK, Thayer SA (2000) Beta-chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia. Neuroscience 98: 191–199.

    PubMed  CAS  Google Scholar 

  • Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75: 965–972.

    PubMed  CAS  Google Scholar 

  • Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23: 4410–4419.

    PubMed  CAS  Google Scholar 

  • Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, Miwa A, Takayasu Y, Saito I, Tsuzuki K, Ozawa S (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292: 926–929.

    PubMed  CAS  Google Scholar 

  • Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci 20: 1800–1808.

    PubMed  CAS  Google Scholar 

  • Inoue K, Nakajima K, Morimoto T, Kikuchi Y, Koizumi S, Illes P, Kohsaka S (1998) ATP stimulation of Ca2+ -dependent plasminogen release from cultured microglia. Br J Pharmacol 123: 1304–1310.

    PubMed  CAS  Google Scholar 

  • Itoh T, Beesley J, Itoh A, Cohen AS, Kavanaugh B, Coulter DA, Grinspan JB, Pleasure D (2002) AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J Neurochem 81: 390–402.

    PubMed  CAS  Google Scholar 

  • Jeftinija S, Jeftinija K, Stefanovic G (1997) Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res. 750:41–47.

    PubMed  CAS  Google Scholar 

  • Jimenez AI, Castro E, Mirabet M, Franco R, Delicado EG, Miras-Portugal MT (1999) Potentiation of ATP calcium responses by A2B receptor stimulation and other signals coupled to Gs proteins in type-1 cerebellar astrocytes. Glia 26: 119–128.

    PubMed  CAS  Google Scholar 

  • John GR, Scemes E, Suadicani SO, Liu JS, Charles PC, Lee SC, Spray DC, Brosnan CF (1999) IL- 1 beta differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc Natl Acad Sci U S A 96: 11613–11618.

    PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1: 683–692.

    PubMed  CAS  Google Scholar 

  • Kaya N, Tanaka S, Koike T (2002) ATP selectively suppresses the synthesis of the inflammatory protein microglial response factor (MRF)-1 through Ca(2+) influx via P2X(7) receptors in cultured microglia. Brain Res 952: 86–97.

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Blankenfeld GV, Trotter J (1991) Physiological properties of oligodendrocytes during development. Ann N Y Acad Sci 633: 64–77.

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Orkand RK, Lux HD (1984) Some properties of single potassium channels in cultured oligodendrocytes. Pflugers Arch 400: 215–221.

    PubMed  CAS  Google Scholar 

  • Kirchhoff F, Kettenmann H (1992) GABA Triggers a [Ca2+]i Increase in Murine Precursor Cells of the Oligodendrocyte Lineage. Eur J Neurosci 4: 1049–1058.

    PubMed  Google Scholar 

  • Kirischuk S, Kirchhoff F, Matyash V, Kettenmann H, Verkhratsky A (1999) Glutamate-triggered calcium signaling in mouse bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release. Neuroscience 92: 1051–1059.

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Neuhaus J, Verkhratsky A, Kettenmann H (1995a) Preferential localization of active mitochondria in process tips of immature retinal oligodendrocytes. Neuroreport 6: 737–741.

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995b) Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol 483 (Pt 1): 41–57.

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Tuschick S, Verkhratsky A, Kettenmann H (1996) Calcium signaling in mouse Bergmann glial cells mediated by alpha 1 -adrenoreceptors and H1 histamine receptors. Eur J Neurosci 8: 1198–1208.

    PubMed  CAS  Google Scholar 

  • Koller H, Trimborn M, von Giesen H, Schroeter M, Arendt G (2001) TNFalpha reduces glutamate induced intracellular Ca(2+) increase in cultured cortical astrocytes. Brain Res 893: 237–243.

    PubMed  CAS  Google Scholar 

  • Latour I, Hamid J, Beedle AM, Zamponi GW, MacVicar BA (2003) Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 41: 347–353.

    PubMed  Google Scholar 

  • Leybaert L, Paemeleire K, Strahonja A, Sanderson MJ (1998) Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24: 398–407.

    PubMed  CAS  Google Scholar 

  • Luyt K, Varadi A, Molnar E (2003) Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells. J Neurochem 84: 1452–1464.

    PubMed  CAS  Google Scholar 

  • MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226: 1345–1347.

    PubMed  CAS  Google Scholar 

  • Matyash M, Matyash V, Nolte C, Sorrentino V, Kettenmann H (2002) Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB J 16: 84–86.

    PubMed  CAS  Google Scholar 

  • Matyash V, Filippov V, Mohrhagen K, Kettenmann H (2001) Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci 18: 664–670.

    PubMed  CAS  Google Scholar 

  • McLarnon JG, Franciosi S, Wang X, Bae JH, Choi HB, Kim SU (2001) Acute actions of tumor necrosis factor-alpha on intracellular Ca(2+) and K(+) currents in human microglia. Neuroscience 104: 1175–1184.

    PubMed  CAS  Google Scholar 

  • Minelli A, Lyons S, Nolte C, Verkhratsky A, Kettenmann H (2000) Ammonium triggers calcium elevation in cultured mouse microglial cells by initiating Ca(2+) release from thapsigargin-sensitive intracellular stores. Pflugers Arch 439: 370–377.

    PubMed  CAS  Google Scholar 

  • Moller T, Contos JJ, Musante DB, Chun J, Ransom BR (2001) Expression and function of lysophosphatidic acid receptors in cultured rodent microglial cells. J Biol Chem 276: 25946–25952.

    PubMed  CAS  Google Scholar 

  • Moller T, Hanisch UK, Ransom BR (2000) Thrombin-induced activation of cultured rodent microglia. J Neurochem 75: 1539–1547.

    PubMed  CAS  Google Scholar 

  • Moller T, Kann O, Prinz M, Kirchhoff F, Verkhratsky A, Kettenmann H (1997a) Endothelin-induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors. Neuroreport 8: 2127–2131.

    PubMed  CAS  Google Scholar 

  • Moller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H (1997b) Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci 17: 615–624.

    PubMed  CAS  Google Scholar 

  • Moorman SJ (1996) The inhibition of motility that results from contact between two oligodendrocytes in vitro can be blocked by pertussis toxin. Glia 16: 257–265.

    PubMed  CAS  Google Scholar 

  • Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256: 1563–1566.

    PubMed  CAS  Google Scholar 

  • Muller T, Moller T, Neuhaus J, Kettenmann H (1996) Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia 17: 274–284.

    PubMed  CAS  Google Scholar 

  • Nett WJ, Oloff SH, McCarthy KD (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87: 528–537.

    PubMed  Google Scholar 

  • Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci 21: 2215–2223.

    PubMed  CAS  Google Scholar 

  • Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275: 844–847.

    PubMed  CAS  Google Scholar 

  • Noda M, Nakanishi H, Nabekura J, Akaike N (2000) AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20: 251–258.

    PubMed  CAS  Google Scholar 

  • Nolte C, Moller T, Walter T, Kettenmann H (1996) Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience 73: 1091–1107.

    PubMed  CAS  Google Scholar 

  • Paemeleire K, Leybaert L (2000) ATP-dependent astrocyte-endothelial calcium signaling following mechanical damage to a single astrocyte in astrocyte-endothelial co-cultures. J Neurotrauma 17: 345–358.

    PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signaling. Nature 369:744–747.

    PubMed  CAS  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4: 803–812.

    PubMed  CAS  Google Scholar 

  • Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21: 477–484.

    PubMed  CAS  Google Scholar 

  • Pende M, Holtzclaw LA, Curtis JL, Russell JT, Gallo V (1994) Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc Natl Acad Sci U S A 91: 3215–3219.

    PubMed  CAS  Google Scholar 

  • Pizzo P, Burgo A, Pozzan T, Fasolato C (2001) Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem 79: 98–109.

    PubMed  CAS  Google Scholar 

  • Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmann H (2002) Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J Immunol 168: 3221–3226.

    PubMed  CAS  Google Scholar 

  • Rogers SW, Gregori NZ, Carlson N, Gahring LC, Noble M (2001) Neuronal nicotinic acetylcholine receptor expression by O2A/oligodendrocyte progenitor cells. Glia 33: 306–313.

    PubMed  CAS  Google Scholar 

  • Sanchez-Gomez MV, Matute C (1999) AMPA and kainate receptors each mediate excitotoxicity in oligodendroglial cultures. Neurobiol Dis 6: 475–485.

    PubMed  CAS  Google Scholar 

  • Sayah S, Jauneau AC, Patte C, Tonon MC, Vaudry H, Fontaine M (2003) Two different transduction pathways are activated by C3a and C5a anaphylatoxins on astrocytes. Brain Res Mol Brain Res 112: 53–60.

    PubMed  CAS  Google Scholar 

  • Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20: 1435–1445.

    PubMed  CAS  Google Scholar 

  • Schilling T, Repp H, Richter H, Koschinski A, Heinemann U, Dreyer F, Eder C (2002) Lysophospholipids induce membrane hyperpolarization in microglia by activation of IKCa1 Ca(2+)-dependent K(+) channels. Neuroscience 109: 827–835.

    PubMed  CAS  Google Scholar 

  • Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 16: 255–257.

    PubMed  CAS  Google Scholar 

  • Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-D- aspartate receptors. FASEB J 15: 1270–1272.

    PubMed  CAS  Google Scholar 

  • Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74: 555–563.

    PubMed  CAS  Google Scholar 

  • Simpson PB, Mehotra S, Lange GD, Russell JT (1997) High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem 272: 22654–22661.

    PubMed  CAS  Google Scholar 

  • Simpson PB, Russell JT (1996) Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. J Biol Chem 271: 33493–33501.

    PubMed  CAS  Google Scholar 

  • Simpson PB, Russell JT (1997) Role of sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia. Biochem J 325 (Pt 1): 239–247.

    PubMed  CAS  Google Scholar 

  • Simpson PB, Russell JT (1998) Mitochondrial Ca2+ uptake and release influence metabotropic and ionotropic cytosolic Ca2+ responses in rat oligodendrocyte progenitors. J Physiol 508 (Pt 2): 413–426.

    PubMed  CAS  Google Scholar 

  • Steiner MR, Urso JR, Klein J, Steiner SM (2002) Multiple astrocyte responses to lysophosphatidic acids. Biochim Biophys Acta 1582: 154–160.

    PubMed  CAS  Google Scholar 

  • Stephens GJ, Marriott DR, Djamgoz MB, Wilkin GP (1993) Electrophysiological and biochemical evidence for bradykinin receptors on cultured rat cortical oligodendrocytes. Neurosci Lett 153: 223–226.

    PubMed  CAS  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277: 10482–10488.

    PubMed  CAS  Google Scholar 

  • Suadicani SO, Pina-Benabou MH, Urban-Maldonado M, Spray DC, Scemes E (2003) Acute downregulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia 42: 160–171.

    PubMed  Google Scholar 

  • Tabuchi S, Kume K, Aihara M, Shimizu T (2000) Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genes. Neurochem Res 25: 573–582.

    PubMed  CAS  Google Scholar 

  • Takeda M, Nelson DJ, Soliven B (1995) Calcium signaling in cultured rat oligodendrocytes. Glia 14: 225–236.

    PubMed  CAS  Google Scholar 

  • Toescu EC, Moller T, Kettenmann H, Verkhratsky A (1998) Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience 86: 925–935.

    PubMed  CAS  Google Scholar 

  • Toms NJ, Roberts PJ (1999) Group 1 mGlu receptors elevate [Ca2+] i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology 38: 1511–1517.

    PubMed  CAS  Google Scholar 

  • Tuschick S, Kirischuk S, Kirchhoff F, Liefeldt L, Paul M, Verkhratsky A, Kettenmann H (1997) Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals. Cell Calcium 21: 409–419.

    PubMed  CAS  Google Scholar 

  • Venance L, Premont J, Glowinski J, Giaume C (1998) Gap junctional communication and pharmacological heterogeneity in astrocytes cultured from the rat striatum. J Physiol 510 (Pt 2): 429–440.

    PubMed  CAS  Google Scholar 

  • Verderio C, Bruzzone S, Zocchi E, Fedele E, Schenk U, De Flora A, Matteoli M (2001) Evidence of a role for cyclic ADP-ribose in calcium signaling and neurotransmitter release in cultured astrocytes. J Neurochem 78: 646–657.

    PubMed  CAS  Google Scholar 

  • Verderio C, Matteoli M (2001) Atp mediates calcium signaling between astrocytes and microglial cells: modulation by ifn-gamma. J Immunol 166: 6383–6391.

    PubMed  CAS  Google Scholar 

  • Verkhratsky AN, Trotter J, Kettenmann H (1990) Cultured glial precursor cells from mouse cortex express two types of calcium currents. Neurosci Lett 112: 194–198.

    PubMed  CAS  Google Scholar 

  • Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38: 12–18.

    PubMed  CAS  Google Scholar 

  • Walz W, Ilschner S, Ohlemeyer C, Banati R, Kettenmann H (1993) Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci 13: 4403–4411.

    PubMed  CAS  Google Scholar 

  • Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72: 2001–2007.

    PubMed  CAS  Google Scholar 

  • Whittemore ER, Korotzer AR, Etebari A, Cotman CW (1993) Carbachol increases intracellular free calcium in cultured rat microglia. Brain Res 59–64.

    Google Scholar 

  • Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3: 291–298.

    PubMed  CAS  Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23: 3588–3596.

    PubMed  CAS  Google Scholar 

  • Zhang L, McLarnon JG, Goghari V, Lee YB, Kim SU, Krieger C (1998) Cholinergic agonists increase intracellular Ca2+ in cultured human microglia. Neurosci Lett 255: 33–36.

    PubMed  CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6: 43–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Kettenmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kettenmann, H., Schipke, C.G. (2004). Calcium signaling in glia. In: Hatton, G.I., Parpura, V. (eds) Glial ⇔ Neuronal Signaling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7937-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7937-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1069-4

  • Online ISBN: 978-1-4020-7937-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics