Skip to main content

Glial-neuronal interactions and brain energy metabolism

  • Chapter

Abstract

Golgi, more than a century ago, suggested that glial cells provide nutritive support for neurons. He based this on his microscopic observations that glial cells are positioned between blood vessels and neurons, and their endfeet intimately surround blood vessels (Andriezen, 1893; Cajal, 1995). The anatomic arrangement of astrocytes, neurons and capillaries suggested that nutrients might be taken up preferentially by astrocytes. Astrocytes would then ‘share’ these nutrients with nearby neurons (Figure 11.1A). This old idea gained a degree of modern plausibility as more was learned about brain energy metabolism, and it was discovered that astrocytes are the only cells in the mammalian brain that contain significant glycogen (Cataldo and Broadwell, 1986a), the storage form of glucose. These refinements in the evolution of the nutritive hypothesis are shown in Figure 11.1B. The transfer of energy substrate (e.g. glucose or monocarboxylates) occurs across brain extracellular space (ECS), which is so narrow that molecules released from one cell diffuse almost instantly to adjacent cells (Nicholson, 1995). A crucial permissive feature of this scheme is that nearly every neuron in the brain shares common ECS with adjacent astrocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ANLSH:

Astrocyte-neuron lactate shuttle hypothesis

ATP:

Adenosine triphosphate

CAP:

Compound action potential

CIN:

Cinnamic acid

CNS:

Central nervous system

ECS:

Extracellular space

FDG PET:

18F-deoxyglucose positron emission tomography

[glucose]o :

Extracellular glucose concentration

G:

6-P: Glucose-6-phosphate

GFAP:

Glial fibrillary acidic protein

Gln:

Glutamine

Glu:

Glutamate

Glut:

1,3,4 Glucose transporter 1,3,4

GS:

Glutamine synthetase

[K+]o :

Extracellular potassium ion concentration

Lac:

Lactate

LDH:

Lactate dehydrogenase

MCT:

Monocarboxylate transporters

MON:

Mouse optic nerve

NADPH:

Nicotinamide adenine dinucleotide phosphate hydrogenase

Pyr:

Pyruvate

VIP:

Vasoactive intestinal peptide

References

  • Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, Kerr D, Leone P, Krystal JH, Spencer DD, During MJ, Sherwin RS (2002) Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 22: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions [In Process Citation]. Glia 32: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Anderson CM, Nedergaard M (2003) Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 26: 340–344; author reply 344–345.

    Google Scholar 

  • Andriezen WL (1893) On a system of fibre-like cells surrounding the blood vessels of the brain of man and mammals, and its physiological significance. Int Monatsschr Anat Physiol 10: 532–540.

    Google Scholar 

  • Bernard-Helary K, Lapouble E, Ardourel M, Hevor T, Cloix JF (2000) Correlation between brain glycogen and convulsive state in mice submitted to methionine sulfoximine. Life Sci 67: 1773–1781.

    Article  PubMed  CAS  Google Scholar 

  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16: 1079–1089.

    Article  PubMed  CAS  Google Scholar 

  • Bouzier-Sore AK, Merle M, Magistretti PJ, Pellerin L (2002) Feeding active neurons: (re)emergence of a nursing role for astrocytes. J Physiol Paris 96: 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 23: 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  • Broer S, Rahman B, Pellegri G, Pellerin L, Martin JL, Verleysdonk S, Hamprecht B, Magistretti PJ (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272: 30096–30102.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Ransom BR (2002) Neuroprotective effects of increased extracellular Ca(2+) during aglycemia in white matter. J Neurophysiol 88: 1302–1307.

    PubMed  CAS  Google Scholar 

  • Brown AM, Wender R, Ransom BR (2001) Ionic mechanisms of aglycemic axon injury in mammalian central white matter. J Cereb Blood Flow Metab 21: 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Tekkok SB, Ransom BR (2003) Glycogen regulation and functional role in mouse white matter. J Physiol 549: 501–512.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Westenbroek RE, Baltan Tekkok S, Ransom BR (2002) Functional insulin receptors are selectively expressed on CNS astrocytes. Soc Neurosci Abstr: (#581.512).

    Google Scholar 

  • Cajal R (1995) Histology of the Nervous System. New York: Oxford University Press.

    Google Scholar 

  • Cardinaud B, Coles JA, Perrottet P, Spencer AJ, Osborne MP, Tsacopoulos M (1994) The composition of the interstitial fluid in the retina of the honeybee drone: implications for the supply of substrates of energy metabolism from blood to neurons. Proc R Ros Lond [Biol] 257: 49–58.

    Article  CAS  Google Scholar 

  • Cataldo AM, Broadwell RD (1986a) Cytochemical identification of cerebral glycogen and glucose-6- phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15: 511–524.

    Article  PubMed  CAS  Google Scholar 

  • Cataldo AM, Broadwell RD (1986b) Cytochemical identification of cerebral glycogen and glucose-6- phosphatase activity under normal and experimental conditions. I. Neurons and glia. J Electron Microscopy Technique 3: 413–437.

    Article  CAS  Google Scholar 

  • Champe PC, Harvey RA (1994) Lippincott’s Illustrated reviews: Biochemistry, 2 Edition. Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  • Chesler A, Himwich HE (1944) Effect of insulin hypoglycaemia on glycogen content of parts of the central nervous system of the dog. Arch Neurol Psychiat 52: 114–116.

    CAS  Google Scholar 

  • Chih CP, Roberts Jr EL (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23: 1263–1281.

    Article  PubMed  CAS  Google Scholar 

  • Chih CP, Lipton P, Roberts EL, Jr. (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24: 573–578.

    Article  PubMed  CAS  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th Edition (Siegel GS, Agranoff B, eds), pp 637–669. Philadelphia: Lippincott-Raven Pubs.

    Google Scholar 

  • Connors BW, Ransom BR, Kunis DM, Gutnick MJ (1982) Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216: 1341–1343.

    Article  PubMed  CAS  Google Scholar 

  • Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22: 1476–1489.

    Article  PubMed  CAS  Google Scholar 

  • del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98: 73–81.

    Article  PubMed  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623: 208–214.

    Article  PubMed  CAS  Google Scholar 

  • Fellows LK, Boutelle MG (1993) Rapid changes in extracellular glucose levels and blood flow in the striatum of the freely moving rat. Brain Res 604: 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Fern R, Davis P, Waxman SG, Ransom BR (1998) Axon conduction and survival in CNS white matter during energy deprivation: a developmental study. J Neurophysiol 79: 95–105.

    PubMed  CAS  Google Scholar 

  • Forsyth R, Fray A, Boutelle M, Fillenz M, Middleditch C, Burchell A (1996) A role for astrocytes in glucose delivery to neurons? Dev Neurosci 18: 360–370.

    Article  PubMed  CAS  Google Scholar 

  • Friede RL (1962) Cytochemistry of normal and reactive astrocytes. J Neuropathol Exp Neurol 21: 471–478.

    Article  PubMed  CAS  Google Scholar 

  • Frier BM, Fisher BM (1999) Hypoglycaemia in Clinical Diabetes. New York: John Wiley & Sons, Ltd.

    Google Scholar 

  • Ganong WF (1989) Review of Medical Physiology. Norwalk, Connecticut: Appleton and Lange.

    Google Scholar 

  • Garrett RH, Grisham CM (1999) Biochemistry: Second Edition, 2 Edition. Fort Worth: Saunders College Publishing.

    Google Scholar 

  • Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13: 3510–3524.

    PubMed  CAS  Google Scholar 

  • Gotoh J, Itoh Y, Kuang TY, Cook M, Law MJ, Sokoloff L (2000) Negligible glucose-6-phosphatase activity in cultured astroglia. J Neurochem 74: 1400–1408.

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343 Pt 2: 281–299.

    Google Scholar 

  • Hamai M, Minokoshi Y, Shimazu T (1999) L-glutamate and insulin enhance glycogen synthesis in cultured astrocytes from the rat brain through different intracellular mechanisms. J Neurochem 73: 400–407.

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8: 1922–1928.

    PubMed  CAS  Google Scholar 

  • Hu Y, Wilson GS (1997) Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem 68: 1745–1752.

    Article  PubMed  CAS  Google Scholar 

  • Jackson VN, Halestrap AP (1996) The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem 271: 861–868.

    Article  PubMed  CAS  Google Scholar 

  • Jackson VN, Halestrap AP (1996) The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem 271: 861–868.

    Google Scholar 

  • Koehler-Stec EM, Simpson IA, Vannucci SJ, Landschulz KT, Landschulz WH (1998) Monocarboxylate transporter expression in mouse brain. Am J Physiol 275: E516–524.

    Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Ergeb Physiol 57: 1–90.

    PubMed  CAS  Google Scholar 

  • Larrabee MG (1983) Lactate uptake and release in the presence of glucose by sympathetic ganglia of chicken embryos and by neuronal and nonneuronal cultures prepared from these ganglia. J Neurochem 40: 1237–1250.

    Article  PubMed  CAS  Google Scholar 

  • Larrabee MG (1996) Partitioning of CO2 production between glucose and lactate in excised sympathetic ganglia, with implications for brain. J Neurochem 67: 1726–1734.

    Article  PubMed  CAS  Google Scholar 

  • Lowry JP, O’Neill RD, Boutelle MG, Fillenz M (1998) Continuous monitoring of extracellular glucose concentrations in the striatum of freely moving rats with an implanted glucose biosensor. J Neurochem 70: 391–396.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ (1997) Coupling of cerebral blood flow and metabolism. In: Primer of cerebrovascular diseases (Welch KMA, Caplan LR, Reis DJ, Siesjö BK, Weir B, eds), pp 70–75: Academic Press.

    Chapter  Google Scholar 

  • Magistretti PJ (1999) Cellular and molecular bases of brain energy metabolism. In: Fundamental Neuroscience (Magistretti PJ, eds), pp 389–413: Academic Press.

    Google Scholar 

  • Magistretti PJ, Pellerin L (1999) The role of astrocytes in coupling synaptic activity to glucose utilization in the brain. NIPS 14: 177–182.

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Ransom BR (2002) Astrocytes. In: Neuropsychopharmacology (Davis KL, Charney D, Coyle JT, Nemeroff C, eds), pp 133–146. Philadelphia, PA: Lippincott Williams and Wilkins.

    Google Scholar 

  • Magistretti PJ, Hof P, Martin JL (1986) Adenosine stimulates glycogenolysis in mouse cerebral cortex : a possible coupling mechanism between neuronal activity and energy metabolism. JN 6: 2558–2562.

    CAS  Google Scholar 

  • Magistretti PJ, Sorg O, Martin J-L (1993a) Regulation of glycogen metabolism in astrocytes: physiological, pharmacological, and pathological aspects. In: Astrocytes: Pharmacology and Function, pp 243–265: Academic Press.

    Google Scholar 

  • Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induced glycogenolysis in mouse cortical slices : a possible regulatory mechanism for the local control of energy metabolism. PNAS 78: 6535–6539.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L (1993b) Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 15: 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti RJ, Sorg O, Martin J-L (1993c) Regulation of glycogen metabolism in astrocytes: Physiological, pharmacological and pathological aspects. In: Astrocytes: Pharmacology and Function (Murphy S, ed), pp 243–265. San Diego: Academic.

    Google Scholar 

  • Nedergaard M, Ransom BR, Goldman S (2003) New roles for astrocytes: Redefining the functional architecture of the brain (review). TINS 26: 523–530.

    PubMed  CAS  Google Scholar 

  • Nicholson C (1995) Extracellular space as the pathway for neuron-glial cell interaction. In: Neuroglia (Kettenmann H, Ransom BR, eds), pp 387–397. New York: Oxford University Press.

    Google Scholar 

  • Pellegri G, Bittar PG, Martin J-L, Magistretti PJ (1996) Differential distribution of lactate transporters and lactate dehydrogenase (LDH) isozymes: evidence for an astrocyte-neuron lactate cycle. Soc Neurosci Abstr.

    Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. PNAS 91: 10625–10629.

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (2003a) How to balance the brain energy budget while spending glucose differently. J Physiol 546: 325.

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (2003b) Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 23: 1282–1286.

    Article  PubMed  Google Scholar 

  • Pfeiffer-Guglielmi B, Fleckenstein B, Jung G, Hamprecht B (2003) Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem 85: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Poitry-Yamate CL, Poitry S, Tsacopoulos M (1995) Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci 15: 5179–5191.

    PubMed  CAS  Google Scholar 

  • Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264: C761–782.

    Google Scholar 

  • Ransom BR, Fern R (1996) Anoxic-Ischemic glial cell injury: Mechanisms and Consequences. In: Tissue oxygen deprivation (Haddad G, Lister G, eds), pp 617–652. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Ransom BR, Fern R (1997) Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation? Glia 21: 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Rinkel M, Himwich HE (1959) Insulin Treatment in Psychiatry. New York: Philosophical Library, Inc.

    Google Scholar 

  • Rose CR, Waxman SG, Ransom BR (1998) Effects of glucose deprivation, chemical hypoxia, and simulated ischemia on Na+ homeostasis in rat spinal cord astrocytes. J Neurosci 18: 3554–3562.

    PubMed  CAS  Google Scholar 

  • Salem RD, Hammerschlag R, Brancho H, Orkand RK (1975) Influence of potassium ions on accumulation and metabolism of (14C)glucose by glial cells. Brain Res 86: 499–503.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Abarca LI, Tabernero A, Medina JM (2001) Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia 36: 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240: 1326–1328.

    Article  PubMed  CAS  Google Scholar 

  • Shulman RG, Bloch G, Rothman DL (1995) In vivo regulation of muscle glycogen synthase and the control of glycogen synthesis. Proc Natl Acad Sci U S A 92: 8535–8542.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö BK (1978) Brain energy metabolism. New York: John Wiley & Sons.

    Google Scholar 

  • Silver IA, Erecinska M (1994) Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14: 5068–5076.

    PubMed  CAS  Google Scholar 

  • Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23: 9254–9262.

    PubMed  CAS  Google Scholar 

  • Sloviter HA, Kamimoto T (1970) The isolated, perfused rat brain preparation metabolizes mannose but not maltose. J Neurochem 17: 1109–1111.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1992) The brain as a chemical machine. Prog Brain Res 94: 19–33.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  • Sorg O, Magistretti PJ (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. JN 12: 4923–4931.

    CAS  Google Scholar 

  • Stryer L (1995) Pentose phosphate pathway and gluconeogenesis. In: Biochemistry, fourth Edition, pp 559–580. New York: W.H. Freeman.

    Google Scholar 

  • Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70: S138–144.

    Article  Google Scholar 

  • Swanson RA, Choi DW (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13: 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Sagar SM, Sharp FR (1989) Regional brain glycogen stores and metabolism during complete global ischaemia. Neurol Res 11: 24–28.

    PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Poitry-Yamate CL, Poitry S (1997) Ammonium and Glutamate Released by Neurons Are Signals Regulating the Nutritive Function of a Glial Cell. J Neurosci 17: 2383–2390.

    PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Veuthey AL, Saravelos SG, Perrottet P, Tsoupras G (1994) Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina. J Neurosci 14: 1339–1351.

    PubMed  CAS  Google Scholar 

  • Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21: 2–21.

    Article  PubMed  CAS  Google Scholar 

  • Villar-Palasi C, Lamer J (1960) Levels of activity of the enzymes of glycogen cycle in rate tissues. Arch of Biochem and Biophys 86: 270–273.

    Article  CAS  Google Scholar 

  • Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, Magistretti PJ, Pellerin L (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37: 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1: 366–370.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Passonneau JV (1974) The effect of trauma on cerebral glycogen and related metabolites and enzymes. Brain Research 66: 147–159.

    Article  CAS  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20: 6804–6810.

    PubMed  CAS  Google Scholar 

  • Wiesinger H, Hamprecht B, Dringen R (1997) Metabolic pathways for glucose in astrocytes. Glia 21: 22–34.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe DE, Nicholls JG (1967) Uptake of radioactive glucose and its conversion to glycogen by neurons and glial cells in the leech central nervous system. J Neurophysiol 30: 1593–1609.

    PubMed  CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6: 43–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Ransom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, A.M., Tekkök, S.B., Ransom, B.R. (2004). Glial-neuronal interactions and brain energy metabolism. In: Hatton, G.I., Parpura, V. (eds) Glial ⇔ Neuronal Signaling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7937-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7937-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1069-4

  • Online ISBN: 978-1-4020-7937-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics