Skip to main content

Techniques in Knowledge-Based Expert Systems for the Design of Engineering Systems

  • Chapter

Abstract

Engineering design is a process of inventing new physical products and systems to fulfill human needs. It is one of the most important and challenging phases in the development lifecycle of a product (Figure 1). Note that the figure depicts the feedback loops for design only; the other feedback loops have been omitted for clarity.

Design process and the product lifecycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asimow, M. 1962. An Introduction to Design. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  2. Mantyla, M. 1988. An Introduction to Solid Modelling. Rockville, MD: Computer Science Press.

    Google Scholar 

  3. Zeid, I. 1991. CAD/CAM Theory and Practice. New York: McGraw-Hill.

    Google Scholar 

  4. Shah, J. J. and Mantyla, M. 1995. Parametric and Feature-Based CAD/CAM. New York: Wiley.

    Google Scholar 

  5. Chandrasekaran, B. 1994. Functional representation: a brief historical perspective. Applied Artificial Intelligence, 8 (2), pp. 173–197.

    Article  Google Scholar 

  6. Chakrabati, A. and Blessing, L. 1996. Special issue: representing functionality in design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 10 (4), pp. 251–253.

    Article  Google Scholar 

  7. Tor, S. B., Britton, G. A., Chandrashekar, M. and Ng, K. W. 1998. Functional Design. In: Usher, J. M. et al. (eds.), Chapter 2 of Integrated Product and Process Development: Methods, Tools and Technologies. New York: Wiley, pp. 29–58.

    Google Scholar 

  8. The ICAD System User’s Manual, Release 7.0. 1999. Luxembourg: Knowledge Technologies International Inc.

    Google Scholar 

  9. Unigraphics User’s Manual, Version 18.0. 2001. Maryland Heights, MO: Unigraphics Solutions Inc.

    Google Scholar 

  10. The Intent! User’s Manual, Version 4.0. 1999. Medfield, Massachusetts: Heide Corp.

    Google Scholar 

  11. Shaw, M. L. G. and Gaines, B. R. 1992. The synthesis of knowledge engineering and software engineering. In: Loucopoulos, P. (ed.), Advanced Information Systems Engineering. Manchester: Spring-Verlag.

    Google Scholar 

  12. Newell, A. 1982. The knowledge level. Artificial Intelligence, 18 (1), pp. 87–127.

    Article  Google Scholar 

  13. Ramoni, M., Stefanelli, M., Magnani, L. and Barosi, G. 1992. An epistemological framework for medical knowledge-based systems. IEEE Transactions on Systems, Man, and Cybernetics, 22 (6), pp. 1361–1375.

    Article  Google Scholar 

  14. Lacey, A. R. 1986. A Dictionary of Philosophy. London: Roultedge & Kegan Paul.

    Google Scholar 

  15. Gruber, T. R. 1993. A translation approach to portable ontology specifications. Knowledge Acquisition, 5 (2), pp. 199–221.

    Article  Google Scholar 

  16. Studer, R., Benjamins, V. R. and Fensel, D. 1998. Knowledge engineering: principles and methods. Data & Knowledge Engineering, 25, pp. 161–197.

    Article  MATH  Google Scholar 

  17. Simoff, S. J. and Maher, M. L. 1998. Designing with the activity/space ontology. In: Gero, J. S. and Sudweeks, F. (eds.), Artificial Intelligence in Design’ 98. London: Kluwer Academic, pp. 23–44.

    Google Scholar 

  18. Schreiber, G., Wielinga, B., Akkermans, H., Van e Velde, W. and Anjewierden, A. 1994. CML: the CommonKADS conceptual modeling language. In: Steels, L., Schreiber, A. T. and Van de Velde, W. (eds.), Future for Knowledge Acquisition: Proceedings of EKAW’ 94. Berlin: Springer-Verlag, pp. 1–25.

    Google Scholar 

  19. Marcus, S., Stout, J. and McDermott, J. 1988. VT: an expert elevator configurer that uses knowledge-based backtracking. AI Magazine, 9 (1), pp. 95–112.

    Google Scholar 

  20. Zhang, W. Y., Tor, S. B. and Britton, G. A. 2002. A two-level modeling approach to acquire functional design knowledge in mechanical engineering systems. International Journal of Advanced Manufacturing Technology, 19 (6), pp. 454–460.

    Article  Google Scholar 

  21. Peirce, C. S. 1997. Pragmatism as a Principle and Method of Right Thinking: The 1903 Harvard Lectures on Pragmatism. Edited and Introduced by Turrisi, P. Albany: State University of New York Press.

    Google Scholar 

  22. Churchman, C. West. 1971. The Design of Inquiring Systems. New York: Basic Books.

    Google Scholar 

  23. Kiritsis, D. 1995. A review of knowledge-based expert systems for process planning, methods and problems. International Journal of Advanced Manufacturing Technology, 10, pp. 240–262.

    Article  Google Scholar 

  24. Clancey, W. J. 1985. Heuristic classification. Artificial Intelligence, 27, pp. 289–350.

    Article  Google Scholar 

  25. Chandrasekaran, B. 1986. Generic tasks in knowledge-based reasoning: high-level building blocks for expert system design. IEEE Expert, 1, pp. 23–30.

    Article  Google Scholar 

  26. Marcus, S. (ed.). 1988. Automating Knowledge Acquisition for Expert Systems. Boston: Kluwer.

    Google Scholar 

  27. Angele, J., Fensel, D. and Studer, R. 1996. Domain and task modeling in MIKE. In: Sutcliffe, A., et al. (eds.), Domain Knowledge for Interactive System Design. New York: Chapman & Hall.

    Google Scholar 

  28. Brown, J. S., Burton, R. R. and De Kleer, J. 1982. Pedagogical, natural language and knowledge engineering techniques in SOPHIE I, II, III. In: Sleeman, D. and Brown, J. S. (eds.), Intelligent Tutoring Systems. London: Academic Press, Chapter 11.

    Google Scholar 

  29. Prerau, D. S. 1990. Developing and Managing Expert Systems. MA: Addison-Wesley.

    Google Scholar 

  30. Jackson, P. 1999. Introduction to Expert Systems, 3rd ed. Harlow, HK: Addison-Wesley.

    Google Scholar 

  31. Bachant, J. 1988. RIME: preliminary work towards a knowledge acquisition tool. In: Marcus, S. (ed.), Automating Knowledge Acquisition for Expert System. Boston: Kluiver Academic, Chapter 7.

    Google Scholar 

  32. McDermott, J. 1982. R1: a rule-based configurer of computer systems. Artificial Intelligence, 19, pp. 39–88.

    Article  Google Scholar 

  33. Chandrasekaran, B. 1990. Design problem solving: a task analysis. AI Magazine, 11 (4), pp. 59–71.

    Google Scholar 

  34. Wielinga, B. and Schreiber, G. 1997. Configuration design problem solving. IEEE Expert Intelligent Systems & Their Applications, 12, pp. 49–56.

    Google Scholar 

  35. Fensel, D. and Motta, E. 2001. Structured development of problem solving methods. IEEE Transactions on Knowledge and Data Engineering, 13 (6), pp. 913–932.

    Article  Google Scholar 

  36. Nillson, N. 1971. Problem-Solving Methods in Artificial Intelligence, New York: McGraw Hill.

    Google Scholar 

  37. Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M. and Gero, J. S. 1990. Knowledge-Based Design Systems. New York: Addison-Wesley.

    Google Scholar 

  38. Chan, Y. W. and Sim, S. K. 1994. A knowledge-based expert system for gearing design application using Prolog and C. Advances in Engineering Software, 19, pp. 149–159.

    Article  Google Scholar 

  39. Brown, D. C. and Birmingham, W. P. 1997. Understanding the nature of design. IEEE Expert Intelligent Systems and Their Application, 12 (2), pp. 14–16.

    Google Scholar 

  40. Newell, A. and Simon, H. A. 1972. Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  41. Li, C. L., Tan, S. T. and Chan, K. W 1996. A qualitative and heuristic approach to the conceptual design of mechanisms. Engineering Application of Artificial Intelligence, 9 (1), pp. 17–31.

    Article  Google Scholar 

  42. Moulianitis, V. C., Dentsoras, A. J., and Aspragathos, N. A. 1999. A knowledge-based system for the conceptual design of grippers for handling fabrics. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 13, pp. 13–25.

    Article  Google Scholar 

  43. Kim, S.-H. and Im, Y.-T. 1999. Knowledge-based expert system for roll pass and profile design for shape rolling of round and square bars. Journal of Materials Processing Technology, 89, pp. 145–151.

    Article  Google Scholar 

  44. Masood, S. H. and Soo, A. 2002. A rule based expert system for rapid prototyping system selection. Robotics and Computer-Integrated Manufacturing, 18, pp. 267–274.

    Article  Google Scholar 

  45. Quillian, M. R. 1968. Semantic memory. In: Minksy, M. L. (ed.), Semantic Information Processing. Cambridge, MA: MIT Press, pp. 227–270.

    Google Scholar 

  46. Fujimoto, H. and Yamoto, H. 1990. Development of design support system with new reasoning and its applications to production line design. In: Proceedings of the 1990 ASME International Computers in Engineering Conference and Exposition. Boston, MA, USA, pp. 17–24.

    Google Scholar 

  47. Cherneff, J., Logcher, R. and Sriram. D. 1991. Integrating CAD with construction-schedule generation. Journal of Computing in Civil Engineering, 5 (1), pp. 65–84.

    Article  Google Scholar 

  48. Rogers, K. J., Priest, J. W. and Haddock, G. 1995. Use of semantic networks to support concurrent engineering in semiconductor product development. Journal of Intelligent Manufacturing, 6 (5), pp. 311–319.

    Article  Google Scholar 

  49. Ishii, K. 1995. Life-cycle engineering design. Journal of Mechanical Design, Transactions of the ASME, 117B, pp. 42–47.

    Article  Google Scholar 

  50. Bullinger, H.-J., Warschat, J. and Fischer, D. 2000. Rapid product development—an overview. Computers in Industry, 42 (2), pp. 99–108.

    Article  Google Scholar 

  51. Minsky, M. L. 1975. A framework for representing knowledge. In: The Psychology of Computer Vision. New York: McGraw-Hill, pp. 211–277.

    Google Scholar 

  52. Forbus, K. D. 1984. Qualitative process theory. Artificial Intelligence, 24, pp. 85–168.

    Article  Google Scholar 

  53. Roschke, P. N. 1991. Advisory system for design of highway safety structures. Journal of Transportation Engineering, 117 (4), pp. 418–434.

    Article  Google Scholar 

  54. Yau, M. Y., Lai, E. M.-K. and Chun, H. W. 1994. FPDX: A knowledge-based system for architectural floor plan design. In: Proceedings of the IEEE International Conference on Expert Systems for Development. Bangkok, Thailand, pp. 309–314.

    Google Scholar 

  55. Glass, A., Holtz, N. and Rasdorf, W.J. 1994. System for describing design artifacts using the knowledge representation technique of frames. Engineering with Computers, 10 (4), pp. 197–211.

    Article  Google Scholar 

  56. Wang, Q., Zhu, J. Y., Shu, Y. Q., Rao, M. and Chuang, K. T. 1995. An intelligent design environment for conceptual process design. Engineering Application of Artificial Intelligence, 8 (2), pp. 15–127.

    Article  Google Scholar 

  57. Meyer, B. 1988. Object-Oriented Software Construction. New York: Prentice-Hall.

    Google Scholar 

  58. Hsu, W. and Woon, I. M. Y. 1998. Current research in the conceptual design of mechanical products. Computer-Aided Design, 30 (5), pp. 377–389.

    Article  Google Scholar 

  59. Akagi, S. and Fujita, K. 1990. Building an expert system for engineering design based on the object-oriented knowledge representation concept. Journal of Mechanical Design, 112, pp. 215–222.

    Article  Google Scholar 

  60. Tong, C. and Gomory, A. 1993. A knowledge based computer environment for the conceptual design of small electromechanical appliances. Computers, 26 (1), pp. 69–71.

    Article  Google Scholar 

  61. Gorti, S. R. and Sriram, R. D. 1996. From symbol to form: a framework for conceptual design. Computer-Aided Design, 28 (11), pp. 853–870.

    Article  Google Scholar 

  62. Clayton, M. J., Teicholz, P., Fischer, M. and Kunz, J. 1999. Virtual components consisting of form, function and behavior. Automation in Construction, 8 (3), pp. 351–367.

    Article  Google Scholar 

  63. Michalek, J. J. and Papalambros, P. Y. 2002. Interactive design optimization of architectural layouts. Engineering Optimization, 34 (5), pp. 485–501.

    Article  Google Scholar 

  64. Lakmazaheri, S. and Rasdorf, W. J. 1990. Formal approach to structural design automation. In: Design Theory and Methodology—Proceedings of DTM’ 90. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, Chicago, USA, Vol. 27, pp. 259–266.

    Google Scholar 

  65. Rasdorf, W. J. and Lakmazaheri, S. 1990. Logic-based approach for modeling organization of design standards. Journal of Computing in Civil Engineering, 4 (2), pp. 102–123.

    Article  Google Scholar 

  66. Hoare, C. A. R. 1996. Logic of engineering design. Microprocessing and Microprogramming, 41, pp. 525–539.

    Article  Google Scholar 

  67. Feijo, B. and Bento, J., 1998. Logic-based environment for reactive agents in intelligent CAD systems. Advances in Engineering Software, 29 (10), pp.825–832.

    Article  Google Scholar 

  68. Bento, J., Feijo, B. and Smith, D. L. 1997. Engineering design knowledge representation based on logic and objects. Computers & Structures, 63 (5), pp. 1015–1032.

    Article  Google Scholar 

  69. Zadeh, L. A. 1965. Fuzzy sets. Information and Control, 8, pp. 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  70. Jones, J. D. and Hua, Y. 1998. A fuzzy knowledge base to support routine engineering design. Fuzzy Sets and Systems, 98, pp. 267–278.

    Article  Google Scholar 

  71. Shragowitz, E., Lee, J.-Y. and Kang, E. Q. 1998. Application of fuzzy logic in computer-aided VLSI design. IEEE Transactions on Fuzzy Systems, 6 (1), pp. 163–172.

    Article  Google Scholar 

  72. Wang, J. 2001. Ranking engineering design concepts using a fuzzy outranking preference model. Fuzzy Sets and Systems, 119, pp. 161–170.

    Article  Google Scholar 

  73. Qin, S.-F., Wright, D. K. and Jordanov, I. N. 2001. A conceptual design tool: a sketch and fuzzy logic based system. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215 (1), pp. 111–116.

    Article  Google Scholar 

  74. Shehab, E. M. and Abdalla, H. S. 2002. A design to cost system for innovative product development. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 216 (7), pp. 999–1019.

    Article  Google Scholar 

  75. Melli, R. and Sciubba, E. 1997. A prototype expert system for the conceptual synthesis of thermal processes. Energy Conversion and Management, 38 (17), pp. 1737–1749.

    Article  Google Scholar 

  76. Hart, P. K. and Rodriguez, J. 1989. Hybrid knowledge-based expert system for design of structural elements. In: Proceedings of the International Computers in Engineering Conference and Exhibition, pp. 287–292.

    Google Scholar 

  77. Rich, E. and Knight, K. 1991. Artificial Intelligence, 2nd edn. New York: McGraw-Hill.

    Google Scholar 

  78. Sullivan, K. A. and Jacobson, S. H. 2000. Ordinal hill climbing algorithms for discrete manufacturing process design optimization problems. Discrete Event Dynamic Systems: Theory and Applications, 10 (4), pp. 307–324.

    Article  MATH  MathSciNet  Google Scholar 

  79. Russell, S. J. and Norvig, P. 1995. Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  80. Sriram, D. 1987. ALL-RISE: a case study in constraint-based design. Artificial Intelligence in Design, 2, pp. 186–203.

    Article  Google Scholar 

  81. Mackworth, A. K. 1977. Consistency in networks of relations. Artificial Intelligence, 8, pp. 99–118.

    Article  MATH  Google Scholar 

  82. Takanori, Y. 1990. An object-oriented and constraint-based knowledge representation system for design object modeling. In: Proceedings of the Conference on Artificial Intelligence Applications. Santa Barbara, CA, USA, pp. 146–152.

    Google Scholar 

  83. Guan, Q. and Gerhard, F. 1993. Fuzzy control over constraint satisfaction problem solving in structural design. 1993 IEEE International Conference on Fuzzy Systems, pp. 1316–1320.

    Google Scholar 

  84. Wu, J. K., Wang, J. H., Feng, C. X. and Liu, T. H. 1995. Logic-based mechanical system constraint model. Engineering with Computers, 11 (3), pp. 157–166.

    Article  MATH  Google Scholar 

  85. Hassan, S. A. 1998. Concurrent engineering constraint-based system. Computers & Industrial Engineering, 35, pp. 459–462.

    Article  Google Scholar 

  86. O’Sullivan, B. and Bowen, J. 1998. A constraint-based approach to supporting conceptual design. In: Gero, J. S. and Sudweeks, F. (eds.), Artificial Intelligence in Design’98, pp. 291–308.

    Google Scholar 

  87. Schank, R. C. and Riesbeck, C. K. 1989. Inside Case Based Reasoning. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  88. Goel, A. K. and Chandrasekaran, B. 1992. Case-based design: a task analysis. In: Artificial Intelligence in Engineering Design, Vol. 2. Boston: Academic Press.

    Google Scholar 

  89. Falting, B. 1997. Case reuse by model-based interpretation. In: Mary, L. M. and Pu, P (eds.), Issues and Applications of Case-Based Reasoning in Design. Mahwah, NJ: Lawrence Erlbaum Associates, pp. 39–60.

    Google Scholar 

  90. Rivard, H. and Fenves, S. J. 2000. SEED-Config: a case-based reasoning system for conceptual building design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 14 (5), pp. 415–430.

    Article  Google Scholar 

  91. Kwong, C. K. 2001. A case-based system for process design of injection molding. International Journal of Computer Applications in Technology, 14 (1), pp. 40–50.

    Article  MathSciNet  Google Scholar 

  92. Stefania, B. and Sara, M. 2002. Improving CBR for compound design with fuzzy indexing and retrieval. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 10 (3), pp. 125–130.

    Google Scholar 

  93. Thompson, J. B. and Lu, S. C.-Y. 1989. Representing and using design rationale in concurrent product and process design. Concurrent Product and Process Design. ASME Winter Annual Meeting, pp. 109–115.

    Google Scholar 

  94. Urban, S. D., Shah, J. J., Liu, H. and Rogers, M. 1996. Shared design manager: interoperability in engineering design. Integrated Computer-Aided Engineering, 3 (3), pp. 158–176.

    Google Scholar 

  95. Kwong, C. K., Smith, G. F. and Lau, W. S. 1997. A blackboard-based approach to concurrent process design of injection molding. Journal of Materials Processing Technology, 70, pp. 258–263.

    Article  Google Scholar 

  96. Roy, U. and Liao, J.-M. 1998. Application of a blackboard framework to a cooperative fixture design system. Computers in Industry, 37, pp. 67–81.

    Article  Google Scholar 

  97. Chau, K. W. and Albermani, F. 2002. Expert system application on preliminary design of water retaining structures. Expert Systems with Applications, 22 (2), pp. 169–178.

    Article  Google Scholar 

  98. Hirtz, J., Stone, R., McAdams, D., Szykman, S. and Wood, K. 2002. A functional basis for engineering design: reconciling and evolving previous efforts. Journal of Research in Engineering Design, 13 (2), pp. 65–82.

    Google Scholar 

  99. Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y. and Tomiyama, T. 1996. Supporting conceptual design based on the function-behavior-state modeler. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: Aiedam, 10, pp. 275–288.

    Article  Google Scholar 

  100. Otto K. and Wood, K. 2001. Product Design: Techniques in Reverse Engineering and New Product Development. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  101. Tor, S. B., Britton, G. A., Zhang, W. Y. and Deng, Y.-M. 2002. Guiding functional design of mechanical products through rule-based causal behavioral reasoning. International Journal of Production Research, 40, pp. 667–682.

    Article  MATH  Google Scholar 

  102. Deng, Y.-M., Tor, S. B. and Britton, G. A. 2000. Abstracting and exploring functional design information for conceptual product design. Engineering with Computers, 16, pp. 36–52.

    Article  Google Scholar 

  103. Deng, Y.-M., Britton, G. A. and Tor, S. B. 1998. A design perspective of mechanical function and its object-oriented representation scheme. Engineering with Computers, 14, pp. 309–320.

    Article  MATH  Google Scholar 

  104. Chen, S.-J., Hwang, C.-L. and Hwang, F. P. 1992. Fuzzy Multiple Attribute Decision Making: Methods and Applications. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  105. Zhang, W. Y., Tor, S. B. and Britton, G. A. 2002. A heuristic state-space approach to the functional design of mechanical systems. International Journal of Advanced Manufacturing Technology. 19 (4), pp. 235–244.

    Article  Google Scholar 

  106. Hoover, S. P. and Rinderle, J. R. 1989. A synthesis strategy for mechanical devices. Research in Engineering Design, 1, pp. 87–103.

    Article  Google Scholar 

  107. Nilsson, N. J. 1998. Artificial Intelligence: A New Synthesis. San Francisco, Calif.: Morgan Kaufmann.

    MATH  Google Scholar 

  108. Tseng, T. Y. and Klein, C. M. 1992. A new algorithm for fuzzy multicriteria decision making. International Journal of Approximate Reasoning, 6, pp. 45–66.

    Article  MATH  MathSciNet  Google Scholar 

  109. Zimmermann, H.-J. 1991. Fuzzy Set Theory and Its Applications. Boston, USA: Kluwer.

    MATH  Google Scholar 

  110. Chen, S. M. 1996. Evaluating weapon systems using fuzzy arithmetic operations. Fuzzy Sets and Systems, 77, pp. 265–276.

    Article  Google Scholar 

  111. Pahl, G. and Beitz, W. 1996. Engineering Design—A Systematic Approach. London: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Britton, G.A., Tor, S.B., Zhang, W.Y. (2005). Techniques in Knowledge-Based Expert Systems for the Design of Engineering Systems. In: Leondes, C.T. (eds) Intelligent Knowledge-Based Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7829-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7829-3_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7746-3

  • Online ISBN: 978-1-4020-7829-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics