Skip to main content

Computation of Effective Cement Paste Diffusivities from Microtomographic Images

  • Chapter
Composites with Micro- and Nano-Structure

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 9))

Abstract

A computational framework for extracting effective diffusivities from microtomographic images is presented. As an example of the capabilities of this framework, the effective diffusivity of a cement paste whose microstructure has been digitized to a resolution of 1 μm is derived. Besides presenting a consistent homogenization procedure, the importance of statistical testing is also highlighted. Indeed, for the problem at hand, it appears that statistical testing and subsequent interpretation of the results in terms of statistical quantities is a necessity for obtaining quantitative information on the property of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Tang and L. O. Nilsson. Rapid determination of the chloride diffusivity in concrete by applying an electric field. Cement and Concrete Research, 89: 49–53, 1992.

    Google Scholar 

  2. C. Andrade. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cement and Concrete Research, 23: 724–742, 1993.

    Article  Google Scholar 

  3. H. Friedmann, O. Amiri, A. Ait-Mokhtar, and P. Dumargue. A direct method for determining chloride diffusion coefficient by using migration test. Cement and Concrete Research, 34: 1967–1973, 2004.

    Article  Google Scholar 

  4. S. Goto and D. M. Roy. Diffusion of ions through hardened cement pastes. Cement and Concrete Research, 11: 751–757, 1981.

    Article  Google Scholar 

  5. S. W. Yu and C. L. Page. Diffusion in cementitious materials: 1. Comparative study of chloride and oxygen diffusion in hydrated cement pastes. Cement and Concrete Research, 21: 581–588, 1991.

    Article  Google Scholar 

  6. V. T. Ngala et al. Diffusion in cementitious materials: II. Further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30% PFA pastes. Cement and Concrete Research, 25: 819–826, 1995.

    Article  Google Scholar 

  7. J. Z. Zhang and N. Buenfeld. Presence and possible implications of a membrane potential in concrete exposed to chloride solution. Cement and Concrete Research, 27: 853–859, 1997.

    Article  Google Scholar 

  8. S. Chatterji. Colloid electrochemistry of saturated cement paste and some properties of cement based materials. Advances in Cement Based Materials, 7: 102–108, 1998.

    Article  Google Scholar 

  9. D. P. Bentz et al. Microstructure and transport properties of porous building materials. II: Three-dimensional X-ray tomographic studies. Materials and Structures, 33: 147–153, 2000.

    Article  Google Scholar 

  10. C. Manwart et al. Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Physical Review E, 66 (016702), 2002.

    Google Scholar 

  11. M. Koster, J. Hannawald, and W. Brameshuber. Simulation of water permeability and water vapor diffusion through hardened cement paste. Computational Mechanics, 37: 164–172, 2006.

    Google Scholar 

  12. D. P. Bentz et al. The Visible Cement Data Set. Journal of Research of the National Institute of Standards and Technology, 107: 137–148, 2002. URL http://visiblecement.nist.gov.

  13. W. B. Lindquist et al. Pore and throat size distributions measured from sychrotron x-ray tomographic images of fontainebleau sandstones. Journal of Geophysical Research, 105B: 21508–21528, 2000.

    Google Scholar 

  14. P. Lehman et al. Tomographical imaging and mathematical description of porous media used for the prediction of fluid distribution. Vadose Zone Journal, 5: 80–97, 2006.

    Article  Google Scholar 

  15. P. Weiss et al. Synchrotron and non synchrotron x-ray microtomography three dimensional representation of bone ingrowth in calcium phosphate biomaterials. European Cells and Materials, 9: 48–49, 2005.

    Google Scholar 

  16. E. Maire et al. Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography. Journal of the European Ceramic Society, 27: 1973–1981, 2007.

    Article  Google Scholar 

  17. T. J. Chotard et al. Characterisation of early stage calcium aluminate cement hydration by combination of non-destructive techniques: acoustic emission and X-ray tomography. Journal of the European Ceramic Society, 23: 2211–2223, 2003.

    Article  Google Scholar 

  18. M. A. Knackstedt et al. Elastic and transport properties of cellular solids derived from three-dimensional tomographic images. Proceedings of the Royal Society A, 462: 2833–2862, 2006.

    Article  MATH  Google Scholar 

  19. E. Maire et al. On the application of X-ray microtomography in the field of materials science. Advanced Engineering Materials, 3: 539–546, 2001.

    Article  Google Scholar 

  20. M. Hain and P. Wriggers. On the numerical homogenization of hardened cement paste. Compational Mechanics, 2007. Submitted.

    Google Scholar 

  21. M. Ostoja-Starzewski and J. Schulte. Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Physical Review B, 54: 278–285, 1996.

    Article  Google Scholar 

  22. FEAP. A Finite Element Analysis Program (R. L. Taylor). URL http://www.ce.berkeley.edu/rlt/feap.

  23. D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor and Francis, London 1992.

    Google Scholar 

  24. W. Voigt. Lehrbuch der Kristallphysik. Teubner, Leipzig, 1928.

    MATH  Google Scholar 

  25. A. Reuss. Berechnung der fleissgrense von Mischkristallen auf Grund der Plastizitätsbedingung für einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9: 49–58, 1929.

    Article  MATH  Google Scholar 

  26. J. C. Maxwell. A Treatise on Electricity and Magnetism. Dover, New York 1954.

    MATH  Google Scholar 

  27. Z. Hashin and S. Shtrikman. A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics, 33 (10): 3125–3131, 1962.

    Article  MATH  Google Scholar 

  28. P. Sen, C. Scala, and M. Cohen. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics, 46: 781–795, 1981.

    Article  Google Scholar 

  29. J. P. Chiles and P. Delfiner. Geostatistics, Modeling Spatial Uncertainty. Wiley, New York 1999.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Krabbenhoft, K., Hain, M., Wriggers, P. (2008). Computation of Effective Cement Paste Diffusivities from Microtomographic Images. In: Composites with Micro- and Nano-Structure. Computational Methods in Applied Sciences, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6975-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6975-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6974-1

  • Online ISBN: 978-1-4020-6975-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics